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Abstract. Dengue Hemorrhagic Fever remains a major public health concern in urban areas of Indonesia, particularly in 
Bandung City, due to its fluctuating incidence and strong dependence on environmental and population factors. This 
study focuses on improving dengue case prediction by integrating climate and demographic data through systematic 
feature engineering and explainable machine learning based on the Random Forest algorithm. Historical dengue case 
data from Bandung City were used to develop and evaluate the proposed prediction model. The evaluation results show 
that the Random Forest model achieved an R² value of 0.9032 and an RMSE of 2.3748, indicating reliable predictive 
performance and good generalization capability. The applied feature engineering strategy effectively enhanced data 
representation by capturing temporal dynamics, case growth patterns, and interactions among climate variables. 
Furthermore, model interpretability was improved through the application of Explainable Artificial Intelligence using 
SHAP, which revealed that temporal features derived from previous dengue case trends were the most influential factors, 
followed by climate interaction variables. These findings demonstrate that the proposed approach improves prediction 
accuracy while providing transparent and epidemiologically meaningful insights to support data driven dengue early 
warning systems at the regional level. 
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1. INTRODUCTION 

Dengue hemorrhagic fever (DHF) is an infectious disease 
transmitted by the Aedes aegypti and Aedes albopictus 
mosquito vectors, which to date remains a major public 
health problem in various tropical and subtropical 
countries, including Indonesia. Specifically in the city of 
Bandung, the accumulation of cases reaching 7,310 in 
2024 and decreasing significantly to around 3,000 cases 
in 2025 requires continued vigilance, along with 
predictions of a resurgence cycle expected to occur in 
2026 [1], [2]. The disease is transmitted by the Aedes 
aegypti and Aedes albopictus mosquito vectors, with 
incidence rates that tend to fluctuate and are influenced 
by various environmental factors and population 
characteristics [3]. The World Health Organization notes 
that dengue incidence has continued to increase globally 
in recent decades, causing significant social, economic, 
and health burdens [4]. This condition requires an 
accurate and reliable dengue case prediction system to 

support preventive and responsive public health 
intervention planning. 
In the context of dengue epidemiology, climatic factors 
such as temperature, rainfall, and humidity are known to 
play an important role in influencing the life cycle of 
mosquito vectors and the dynamics of dengue virus 
transmission [5]. In addition, demographic factors such 
as population density, age structure, and urbanization 
rates also contribute to the risk of disease spread [6]. 
However, the relationship between these variables is 
complex, nonlinear, and interactive, making it difficult to 
model effectively using conventional statistical 
approaches. Therefore, the use of Machine Learning (ML) 
methods is a promising alternative for capturing hidden 
patterns in multidimensional and large-scale data. 
However, the application of Machine Learning models in 
dengue case prediction still faces a number of challenges. 
One of the main challenges is the quality and 
representation of features used in the modeling process. 
Many previous studies still utilize climate or 
demographic data separately, with feature 



BIMA  
BULLETIN OF INTELLIGENT MACHINES AND ALGORITHMS 

Vol. 1 No.2 January 2026 
E-ISSN: 3132-5115 

DOI: 10.65780/bima.v1i2.10 

 

 
Published by Maheswari Publisher 
Creation disseminated under Creative Commons Attribution 4.0 International License 

     61 

representation used directly without adequate feature 
engineering, so that changes in data patterns over time 
and the relationship between variables have not been 
optimally utilized [7], [8]. In addition, highly complex 
Machine Learning models often have low interpretability, 
limiting their use in public health decision-making 
contexts that require clear explanations [9]. This lack of 
transparency can hinder trust and adoption of prediction 
models in real decision-making. 
In response to these challenges, this study aims to 
improve dengue case prediction performance through 
the systematic application of feature engineering to 
climate and demographic data, as well as integrating the 
Explainable Artificial Intelligence (XAI) approach to 
improve model interpretability. Feature engineering is 
performed to extract and construct informative features, 
such as temporal lag variables, statistical aggregations, 
and nonlinear transformations, which are expected to 
represent environmental and population dynamics more 
accurately [10]. Meanwhile, XAI is used to reveal the 
relative contribution of each feature to the model 
prediction, so that the relationship between climate, 
demographic factors, and the increase in dengue cases 
can be explained transparently and logically [11]. 
This study aims to develop a dengue case prediction 
model that has high performance and is able to provide a 
clear understanding of the factors that influence 
prediction results. Specifically, this study evaluates the 
effect of feature engineering on improving Machine 
Learning model performance, as well as identifying the 
relative contribution of climate and demographic 
variables through the Explainable Artificial Intelligence 
(XAI) approach. The integration of comprehensive 
feature engineering and XAI-based analysis is the main 
contribution of this study, which distinguishes it from 
previous studies that generally focus solely on improving 
accuracy. Through a more in-depth analysis of the 
dynamics of environmental and demographic factors, the 
results of this study are expected to not only enrich the 
study of dengue epidemiological prediction, but also 
provide a strong scientific basis for the development of 
more effective and data-driven early warning systems. 

2. RELATED WORK 

Various studies have utilized machine learning to 
predict dengue cases by incorporating meteorological 
and demographic variables as model inputs. In a study 
the application of XGBoost to dengue meteorological 
data in Singapore showed that this model achieved an 

R² value of 0.83, MAE  89.12, and RMSE 156.07 when 
predicting dengue cases, highlighting the ability of 
boosting algorithms to capture non-linear relationships 
between complex climate variables [12]. 
In addition, research in recent years has shown that 
Random Forest and ensemble learning algorithms 
remain competitive approaches in dengue case 
prediction based on climate and epidemiological data. 
For example, dengue prediction models built with 
Random Forest and XGBoost on environmental and 
weather datasets show that XGBoost provides better 
prediction performance with lower error values than 
Random Forest, confirming the ability of ensemble 
learning to capture nonlinear variations in infectious 
disease data [13]. Meanwhile, several local studies 
utilizing classification methods on demographic and 
clinical data show that Random Forest can achieve an 
accuracy of up to 90.0% and an AUC of 0.967 in the task 
of early detection of dengue hemorrhagic fever cases, 
while maintaining prediction stability through cross-
validation [14]. 
Other studies focusing on dengue modeling in various 
regions also show variations in model performance 
depending on the methodology and dataset used. A 
study in the coastal region of Sumatra using Random 
Forest and SVM reported that the Random Forest model 
had a lower MSE than SVM, although error metrics such 
as RMSE or full accuracy were not reported [15]. 
In recent years, explainable AI approaches such as SHAP 
have begun to be used to improve the interpretability of 
dengue prediction models by revealing the contribution 
of climatic and demographic variables to prediction 
results. However, the application of systematic feature 
engineering and SHAP analysis on an urban scale is still 
limited, especially in cities with complex characteristics 
such as Bandung. This study aims to fill this gap by 
combining feature engineering and SHAP to produce an 
accurate and interpretable dengue prediction model. 

3. METHODS 

This study proposes a methodological framework for 
dengue case prediction that integrates climate and 
demographic data through systematic data processing, 
feature engineering, machine learning modeling, and 
explainable AI approaches. The proposed method flow is 
designed not only to improve prediction accuracy but 
also to provide clear interpretations of each feature's 
contribution to influencing prediction results. Figure 1 
presents an overview of the proposed method stages 
used in this study. 
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Fig. 1. Flow Study 

The approach utilized in this research is organized into 
multiple essential phases to guarantee a systematic and 
repeatable evaluation process. Every phase is intended to 
meet particular goals, encompassing data preparation, 
feature creation, predictive modeling, and performance 
assessment. The comprehensive account of every 
methodological phase is outlined below 

3.1. Data Collection 

This study uses three main sources of data that are 
integrated with each other, namely dengue fever case 
data, climate data, and population density data. Dengue 
fever case data was obtained from regional health 
agencies and includes the number of cases per subdistrict 
in Bandung City on an annual basis. Climate data includes 
variables such as average temperature, average 
humidity, and rainfall obtained from the Meteorology, 
Climatology, and Geophysics Agency (BMKG). 
Meanwhile, population density data per subdistrict is 
obtained from the Central Statistics Agency (BPS). The 
three datasets are then combined based on geographical 
(subdistrict) and time period (year) compatibility to form 
a DHF case prediction dataset. 

3.2. Data Preprocessing 

Preprocessing steps are carried out to ensure data quality 
and consistency before further analysis. This process 
includes data cleaning by removing duplicate data and 
irrelevant columns, as well as handling missing values 
using an appropriate imputation approach. In addition, 
categorical columns such as subdistrict names are 
encoded using one-hot encoding so that they can be 

processed by machine learning algorithms. Numeric 
feature normalization is also applied to equalize the scale 
between variables, especially in models that are sensitive 
to data scale. 

3.3. Exploratory Data Analysis 

 
Fig. 2. Distribution of dengue 

  

Figure 2 shows a right-skewed pattern, where most 
subdistricts have low to moderate numbers of cases, 
while a few subdistricts experience very high numbers 
of cases. This indicates an imbalance in the distribution 
of dengue fever cases between subdistricts, which may 
be influenced by environmental and demographic 
factors. 
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Fig. 3. Distribution of population density 

Figure 3 also asymmetrical and tends to be skewed to 
the right, with the majority of subdistricts having 
medium density levels. Several subdistricts with very 
high density have the potential to become areas at risk 
of an increase in dengue fever cases due to greater 
human interaction. 

 
Fig. 4. Distribution of average temperature 

Figure 4 is relatively narrow and concentrated, 
indicating that temperature variations between 
subdistricts and years are not particularly large. 
Nevertheless, these small differences in temperature 
range are still relevant because they can affect the life 
cycle of mosquito vectors that cause dengue fever. 

 
Fig. 5. Distribution of average humidity 

Figure 5 shows a multimodal pattern with 
concentrations of values in the medium to high 
humidity range. This condition indicates that variations 
in humidity levels between regions and over time have 
the potential to play an important role in creating an 
environment that supports the development of 
mosquito vectors that cause dengue fever. 

 
Fig. 6. Distribution of Rainfall 

Figure 6 shows a multimodal pattern, indicating 
variations in rainfall conditions between periods and 
regions. High rainfall values have the potential to create 
an environment conducive to mosquito breeding, 
making them a relevant predictor of dengue fever cases. 

3.4. Feature Engineering 

In order for the model to capture more complex 
patterns, we perform feature engineering. This process 
is done by adding new relevant features. These 
interaction features are created from combinations of 
climate variables, such as the interaction between 
rainfall and humidity, as well as temperature and 
humidity. Then, we apply non-linear transformations, 
such as squaring the temperature values and 
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performing logarithmic transformations on population 
density. In addition, we also add epidemiological ratios, 
namely the number of dengue fever cases per 
population, to show the relative risk. Temporal features 
are also constructed using the lag of dengue fever cases 
in the previous year and the rolling mean to capture 
temporal patterns between years. 

3.5. Modeling 

The dataset was divided into training and testing sets, 
where 80% of the data were utilized for model training 
and the remaining 20% were reserved for model 
evaluation. This strategy was adopted to assess the 
generalization capability of the models on unseen data. 
To further ensure the robustness and stability of the 
predictive performance, k-fold cross-validation was 
applied during the training phase. 
Random Forest regression is used as the first ensemble 

learning model because of its robustness in modeling 

nonlinear relationships and feature interactions that are 

often found in epidemiological data. Random Forest is a 

bagging-based ensemble method that builds decision trees 

independently using bootstrap samples and random feature 

selection. The final prediction is obtained by aggregating 

the predictions from all individual trees, which effectively 

reduces variance and reduces overfitting [16]. 

Mathematically, the Random Forest regression prediction is 

defined as Eq (1). 

 

ŷ(𝑥) = (1/𝑇)∑(𝑡 = 1)𝑇𝑓𝑡(𝑥)   (1) 
 

where 𝑇 denotes the total number of decision tree and 
𝑓𝑡(𝑥) represents the prediction of the (𝑡 − 𝑡ℎ) decision 
tree for input 𝑥. 
Extreme Gradient Boosting (XGBoost) is applied as a 
boosting-based ensemble model to improve prediction 
accuracy. XGBoost builds decision trees sequentially, 
where each new tree is trained to minimize the residual 
error of the previous ensemble. Unlike Random Forest, 
XGBoost optimizes a regularized objective function that 
balances prediction accuracy and model complexity 
[17]. The XGBoost objective function is formulated as Eq 
(2). 
 

𝐿 = ∑(𝑖 = 1)𝑛𝑙(𝑦𝑖 , ŷ𝑖) + ∑(𝑘 = 1)𝐾𝛺(𝑓𝑘)  (2) 

 

where 𝑙(𝑦𝑖 , ŷ𝑖) is the loss function (squared error for 
regression), 𝑓𝑘 represents the(𝑘 = 𝑡ℎ) decision tree 
𝛺(𝑓𝑘)is the regularization term defined as Eq (3). 
 

𝛺(𝑓) = 𝛾𝑇 + (1/2)𝜆∑(𝑗 = 1)𝑇𝑤𝑗
2    (3) 

 

with 𝑇 denoting the number leaves in the tree, 𝑤𝑗  

representing the leaf weights, and 𝛾 and 𝜆 acting as 
regularization parameters to control model complexity 
By employing both Random Forest and XGBoost, this 
study provides a comparative analysis between 

bagging-based and boosting-based ensemble 
approaches, enabling a comprehensive evaluation of 
their effectiveness in predicting dengue cases using 
climate and demographic features. 

3.6. Evaluation 

The performance of the proposed models was evaluated 
using the coefficient of determination (R²) and the Root 
Mean Squared Error (RMSE). The R² metric measures 
the proportion of variance in the actual dengue case 
data that can be explained by the model predictions and 
is defined as Eq (4). 
 
𝑅2 = 1 − (∑(𝑖 = 1)𝑛(𝑦𝑖 − ŷ𝑖)

2)/(∑(𝑖 = 1)𝑛(𝑦𝑖 − ȳ)2) 
(4)      
where 𝑦𝑖  represents the actual value, 𝑦𝑖  denotes the 
predicted value, and ȳ is the mean of the observed 
values. In addition, RMSE was used to quantify the 
average magnitude of prediction errors in the original 
scale of the target variable, which is formulated as 

3.7. Explainable AI 

To improve model interpretability, the Explainable AI 
approach was applied using SHAP (SHapley Additive 
exPlanations). SHAP analysis was used to identify the 
contribution of each feature to the prediction of DHF 
cases, thereby providing a more transparent 
understanding of the most influential factors in the 
prediction model. 

4. RESULTS AND DISCUSSIONS 

4.1. Results 

To assess the performance of the Dengue Hemorrhagic 
Fever (DHF) case prediction model, this study conducted 
a comparative evaluation of two machine learning 
algorithms, namely Random Forest and XGBoost. The 
evaluation was carried out using the R-square (R²) and 
Root Mean Square Error (RMSE) metrics to provide a 
comprehensive overview of the model's ability to explain 
data variability and the level of prediction error against 
actual values. The use of these two metrics allows for a 
more objective analysis of model performance, both in 
terms of the accuracy of data pattern representation and 
the numerical accuracy of prediction results. The results 
of the comparison of the performance of the two models 
are summarized in Table 1. 

TABLE 1. Compared evaluation model of machine learning. 

Model 
Evaluation 

R² RMSE 

Random Forest 0.9032 2.3748 

XGBoost 0.9520 1.6663 

 



BIMA  
BULLETIN OF INTELLIGENT MACHINES AND ALGORITHMS 

Vol. 1 No.2 January 2026 
E-ISSN: 3132-5115 

DOI: 10.65780/bima.v1i2.10 

 

 
Published by Maheswari Publisher 
Creation disseminated under Creative Commons Attribution 4.0 International License 

     65 

Based on the evaluation results shown in Table 1, the 
XGBoost model produced a higher R-square value of 
0.9520 compared to Random Forest, which obtained a 
value of 0.9032. This finding indicates that XGBoost has a 
stronger ability to explain the variability of Dengue 
Hemorrhagic Fever (DHF) case data, so that the 
relationship pattern between input variables and the 
number of cases can be represented more complexly. In 
addition, the lower RMSE value in XGBoost, which is 
1.6663, indicates a smaller prediction error rate 
compared to Random Forest with an RMSE of 2.3748. 
Numerically, these results suggest that XGBoost provides 
predictions that are closer to the actual values. However, 
this difference in performance needs to be analyzed 
further by considering the learning characteristics of the 
model and its potential for generalization, given that the 
high evaluation value at this stage does not fully reflect 
the stability of the model when faced with different data. 

  

 
Fig. 8. Learning Curve of XGBoost 

The learning curve analysis in both figures shows a clear 
difference in learning characteristics between the 
XGBoost and Random Forest models. In XGBoost, the 

training data R-square curve shows a very high value 
even with a relatively small amount of training data and 
tends to stabilize as the number of samples increases. 
Meanwhile, the validation curve experiences a gradual 
increase and only approaches the training curve when 
the training data size becomes larger. This pattern 
indicates that XGBoost has high model capacity and is 
able to capture complex patterns quickly, but in the 
early stages of learning, there is still a gap between 
training and validation performance, reflecting a 
potential tendency toward overfitting. 
Unlike XGBoost, Random Forest exhibits a more gradual 
learning pattern and a better balance between the 
training and validation curves. Although the R-square 
value on the training data is slightly lower than that of 
XGBoost, the improvement in performance on the 
validation data is consistent as the number of samples 
increases. The gap between the training and validation 
curves in Random Forest is relatively smaller, especially 
with medium to large training data sizes, indicating a 
more stable model generalization ability. This 
characteristic is important in the context of dengue case 
prediction, which is influenced by temporal variability 
and dynamic environmental factors. 
Overall, the learning curve results confirm that although 
XGBoost excels in terms of numerical performance, 
Random Forest exhibits more robust and reliable 
learning behavior in response to changes in data 
volume. This finding reinforces the basis for selecting 
Random Forest as a more suitable model for further 
analysis, particularly in the context of interpretability 
using the Explainable Artificial Intelligence (XAI) 
approach, where model stability and consistency are 
crucial aspects. 
 

Fig. 7. Learning Curve of Random Forest 
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Fig. 9. SHAP beeswarm 

Figure 9 shows that temporal-based variables and 
previous case dynamics, such as DHF_roll3 and 
DHF_growth, have the most dominant influence on 
model predictions. Positive SHAP values on these 
features indicate that an increase in case trends in the 
previous period contributes significantly to an increase 
in DHF case predictions in the following period. This 
finding confirms that historical case patterns are the 
main determinants in the formation of predictions, in 
line with the characteristics of DHF spread, which is 
seasonal and has a strong temporal dependence. 

 
Fig. 10. SHAP bar plot 

Figure 10 displays the SHAP feature importance plot 
based on the absolute mean SHAP value (mean |SHAP 
value|), which represents the magnitude of each 
variable's contribution to the overall Random Forest 
model prediction. The visualization results show that 
DHF_roll3 is the most dominant feature, followed by 
DHF_growth, confirming that historical information and 
the dynamics of DHF case growth play a major role in 
shaping predictions. The large SHAP values for these 
two variables indicate that the model is highly 
dependent on short-term temporal patterns to capture 
trends in the increase or decrease of cases. 
On the other hand, climate and environmental variables, 
such as the temperature × humidity interaction and case 
lag variables (kasus_lag1 and kasus_lag2), provide 
additional contributions with a more moderate level of 
influence. Meanwhile, demographic variables and 
spatial indicators based on subdistricts show relatively 
small importance values, indicating that their role is 
more contextual than a major driver of predictions. 
Overall, these results reinforce previous XAI findings 
that the Random Forest model prioritizes temporal 
factors as the main determinants, with environmental 
variables serving as supporting factors in modeling the 
dynamics of dengue fever spread. 
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Fig. 11. SHAP dependence plot 

Figure 11 is a SHAP dependence plot that shows the 
relationship between the DHF_roll3 feature value and 
its contribution to the Random Forest model prediction. 
The pattern formed shows an almost monotonic 
relationship, where an increase in the DHF_roll3 value 
is followed by an increase in the SHAP value, indicating 
that the DHF case trend in the previous three periods 
directly contributes to an increase in case predictions in 
the following period. The coloring of the points based on 
the kasus_lag1 variable shows an interaction between 
features, indicating that the influence of DHF_roll3 can 
be amplified or modulated by the number of cases in the 
previous period. This finding confirms that the model 
utilizes a combination of short-term historical 
information to capture the dynamics of DHF spread in a 
non-linear and epidemiologically consistent manner. 

4.2. Discussions 

This research provides a notable contribution by 
simultaneously addressing predictive performance, 
learning stability, and model interpretability. Earlier 
studies have demonstrated the effectiveness of machine 
learning models, particularly ensemble methods, in 
capturing non-linear relationships between climate 
variables and dengue incidence. For example, Tian et al. 
reported that XGBoost achieved strong predictive 
performance when applied to meteorological data for 
dengue prediction, highlighting the advantage of 
boosting-based algorithms in modeling complex 
environmental interactions [12]. Similarly, Maulana and 
Sari showed that ensemble learning approaches, 
including Random Forest and XGBoost, are capable of 
producing competitive prediction results for dengue 
spread modeling [13]. However, these studies primarily 
focused on performance metrics, with limited 
discussion on model robustness and interpretability. 
Consistent with previous findings, the results of this 
study confirm that XGBoost achieves superior 
numerical performance, as indicated by a higher 
coefficient of determination and lower prediction error 
compared to Random Forest. This outcome supports 

prior evidence that boosting-based models are effective 
in capturing complex and non-linear patterns in 
epidemiological data [12],[13]. Nevertheless, this 
research extends beyond conventional performance 
evaluation by incorporating learning curve analysis. The 
learning curve results reveal that Random Forest 
exhibits more stable learning behavior and smaller gaps 
between training and validation performance, 
suggesting better generalization capability. This aspect 
has been largely overlooked in prior dengue prediction 
studies, which often report high accuracy without 
sufficient assessment of model stability on unseen data. 
Another important gap in earlier research relates to the 
limited application of systematic feature engineering. 
Many previous studies rely on raw climate or 
demographic variables, or use them independently, 
without fully exploiting temporal dependencies and 
interaction effects [7],[8]. In contrast, this study 
demonstrates that feature engineering techniques, 
including temporal lag features, rolling statistics, case 
growth rates, and climate interaction variables, 
substantially improve data representation. The 
prominence of engineered temporal features in the 
prediction results confirms that these transformations 
successfully capture the seasonal and temporal 
dynamics of dengue transmission, which are widely 
recognized in epidemiological literature [5]. 
Moreover, while recent studies have begun to 
incorporate Explainable Artificial Intelligence 
approaches such as SHAP to improve interpretability, 
their application in conjunction with ensemble learning 
models remains limited, particularly at the urban scale 
[11]. This research addresses this limitation by applying 
SHAP to the Random Forest model, enabling 
transparent interpretation of feature contributions. The 
XAI results indicate that historical case trends are the 
most influential determinants of dengue predictions, 
followed by climate interaction variables, findings that 
are consistent with established knowledge on dengue 
epidemiology and vector dynamics [3],[5]. By 
emphasizing interpretability alongside predictive 
performance, this study responds to concerns raised in 
the literature regarding the lack of transparency in 
complex machine learning models used for public health 
decision-making [9]. 
Overall, this study advances existing research by 
demonstrating that high predictive accuracy alone is 
insufficient for practical implementation in dengue 
surveillance systems. By integrating feature 
engineering, comparative ensemble modeling, learning 
curve analysis, and explainable AI, this research bridges 
key gaps identified in previous studies [7], [11], [13]. 
The proposed framework balances accuracy, 
robustness, and transparency, thereby providing a more 
reliable and interpretable foundation for the 
development of data-driven dengue early warning 
systems at the regional level. 



BIMA  
BULLETIN OF INTELLIGENT MACHINES AND ALGORITHMS 

Vol. 1 No.2 January 2026 
E-ISSN: 3132-5115 

DOI: 10.65780/bima.v1i2.10 

 

 
Published by Maheswari Publisher 
Creation disseminated under Creative Commons Attribution 4.0 International License 

     68 

5. CONCLUSIONS 

This study compares the performance of the XGBoost and 
Random Forest models in predicting the number of 
Dengue Hemorrhagic Fever (DHF) cases using the R-
square (R²) and Root Mean Square Error (RMSE) metrics. 
The evaluation results show that XGBoost produces the 
best numerical performance with an R² value of 0.9520 
and an RMSE of 1.6663, while Random Forest obtains an 
R² value of 0.9032 and an RMSE of 2.3748. This difference 
indicates that XGBoost has a stronger ability to capture 
complex patterns in the data. However, learning curve 
analysis shows that Random Forest has a more stable and 
consistent learning pattern between training and 
validation data, thus demonstrating better generalization 
capabilities on unseen data. 
In addition to the model's performance achievements, 
this study also shows that the feature engineering 
strategy applied successfully improved the quality of data 
representation. This is reflected in the dominance of 
temporal features and transformed variables, such as 
rolling statistics, case growth, and interactions between 
climate variables, which consistently emerged as major 
contributors to model predictions based on Explainable 
Artificial Intelligence (XAI) analysis. The interpretation of 
the Random Forest model shows that the integration of 
historical case features and environmental factors 
produces stable predictions and explanations that are 
consistent with the epidemiological characteristics of 
DHF. Thus, this study confirms that the combination of 
appropriate feature engineering, reliable prediction 
models, and interpretability approaches provides a 
strong foundation for the development of accurate and 
transparent DHF prediction systems to support decision-
making at the regional level. 
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