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Abstract. Dengue Hemorrhagic Fever remains a major public health concern in urban areas of Indonesia, particularly in
Bandung City, due to its fluctuating incidence and strong dependence on environmental and population factors. This
study focuses on improving dengue case prediction by integrating climate and demographic data through systematic
feature engineering and explainable machine learning based on the Random Forest algorithm. Historical dengue case
data from Bandung City were used to develop and evaluate the proposed prediction model. The evaluation results show
that the Random Forest model achieved an R? value of 0.9032 and an RMSE of 2.3748, indicating reliable predictive
performance and good generalization capability. The applied feature engineering strategy effectively enhanced data
representation by capturing temporal dynamics, case growth patterns, and interactions among climate variables.
Furthermore, model interpretability was improved through the application of Explainable Artificial Intelligence using
SHAP, which revealed that temporal features derived from previous dengue case trends were the most influential factors,
followed by climate interaction variables. These findings demonstrate that the proposed approach improves prediction
accuracy while providing transparent and epidemiologically meaningful insights to support data driven dengue early
warning systems at the regional level.
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1. INTRODUCTION support preventive and responsive public health
intervention planning.

In the context of dengue epidemiology, climatic factors
such as temperature, rainfall, and humidity are known to
play an important role in influencing the life cycle of
mosquito vectors and the dynamics of dengue virus
transmission [5]. In addition, demographic factors such
as population density, age structure, and urbanization

in 2025 requires continued vigilance, along with rates also contribute to the risk of disease spread [6].
predictions of a resurgence cycle expected to occur in However, the relationship between these variables is
2026 [1], [2]. The disease is transmitted by the Aedes complex, nonlinear, and interactive, making it difficult to
aegypti and Aedes albopictus mosquito vectors, with model effectively using conventional statistical
incidence rates that tend to fluctuate and are influenced approaches. Therefore, the use of Machine Learning (ML)
by various environmental factors and population methods is a promising alternative for capturing hidden
characteristics [3]. The World Health Organization notes patterns in multidimensional and large-scale data. =

that dengue incidence has continued to increase globally However, the application of Machine Learning models in
in recent decades, causing significant social, economic, dengue case prediction still faces a number of challenges.
and health burdens [4]. This condition requires an One of the main challenges is the quality and

accurate and reliable dengue case prediction system to representation of features used in the modeling process.
Many previous studies still utilize climate or

demographic  data  separately, @ with feature

Dengue hemorrhagic fever (DHF) is an infectious disease
transmitted by the Aedes aegypti and Aedes albopictus
mosquito vectors, which to date remains a major public
health problem in various tropical and subtropical
countries, including Indonesia. Specifically in the city of
Bandung, the accumulation of cases reaching 7,310 in
2024 and decreasing significantly to around 3,000 cases
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representation used directly without adequate feature
engineering, so that changes in data patterns over time
and the relationship between variables have not been
optimally utilized [7], [8]. In addition, highly complex
Machine Learning models often have low interpretability,
limiting their use in public health decision-making
contexts that require clear explanations [9]. This lack of
transparency can hinder trust and adoption of prediction
models in real decision-making.

In response to these challenges, this study aims to
improve dengue case prediction performance through
the systematic application of feature engineering to
climate and demographic data, as well as integrating the
Explainable Artificial Intelligence (XAI) approach to
improve model interpretability. Feature engineering is
performed to extract and construct informative features,
such as temporal lag variables, statistical aggregations,
and nonlinear transformations, which are expected to
represent environmental and population dynamics more
accurately [10]. Meanwhile, XAl is used to reveal the
relative contribution of each feature to the model
prediction, so that the relationship between climate,
demographic factors, and the increase in dengue cases
can be explained transparently and logically [11].

This study aims to develop a dengue case prediction
model that has high performance and is able to provide a
clear understanding of the factors that influence
prediction results. Specifically, this study evaluates the
effect of feature engineering on improving Machine
Learning model performance, as well as identifying the
relative contribution of climate and demographic
variables through the Explainable Artificial Intelligence
(XAI) approach. The integration of comprehensive
feature engineering and XAl-based analysis is the main
contribution of this study, which distinguishes it from
previous studies that generally focus solely on improving
accuracy. Through a more in-depth analysis of the
dynamics of environmental and demographic factors, the
results of this study are expected to not only enrich the
study of dengue epidemiological prediction, but also
provide a strong scientific basis for the development of
more effective and data-driven early warning systems.

2. RELATED WORK

Various studies have utilized machine learning to
predict dengue cases by incorporating meteorological
and demographic variables as model inputs. In a study
the application of XGBoost to dengue meteorological
data in Singapore showed that this model achieved an
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R? value of 0.83, MAE 89.12, and RMSE 156.07 when
predicting dengue cases, highlighting the ability of
boosting algorithms to capture non-linear relationships
between complex climate variables [12].

In addition, research in recent years has shown that
Random Forest and ensemble learning algorithms
remain competitive approaches in dengue case
prediction based on climate and epidemiological data.
For example, dengue prediction models built with
Random Forest and XGBoost on environmental and
weather datasets show that XGBoost provides better
prediction performance with lower error values than
Random Forest, confirming the ability of ensemble
learning to capture nonlinear variations in infectious
disease data [13]. Meanwhile, several local studies
utilizing classification methods on demographic and
clinical data show that Random Forest can achieve an
accuracy of up to 90.0% and an AUC of 0.967 in the task
of early detection of dengue hemorrhagic fever cases,
while maintaining prediction stability through cross-
validation [14].

Other studies focusing on dengue modeling in various
regions also show variations in model performance
depending on the methodology and dataset used. A
study in the coastal region of Sumatra using Random
Forest and SVM reported that the Random Forest model
had a lower MSE than SVM, although error metrics such
as RMSE or full accuracy were not reported [15].

In recent years, explainable Al approaches such as SHAP
have begun to be used to improve the interpretability of
dengue prediction models by revealing the contribution
of climatic and demographic variables to prediction
results. However, the application of systematic feature
engineering and SHAP analysis on an urban scale is still
limited, especially in cities with complex characteristics
such as Bandung. This study aims to fill this gap by
combining feature engineering and SHAP to produce an
accurate and interpretable dengue prediction model.

3. METHODS

This study proposes a methodological framework for
dengue case prediction that integrates climate and
demographic data through systematic data processing,
feature engineering, machine learning modeling, and
explainable Al approaches. The proposed method flow is
designed not only to improve prediction accuracy but
also to provide clear interpretations of each feature's
contribution to influencing prediction results. Figure 1
presents an overview of the proposed method stages
used in this study.
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Fig. 1. Flow Study

The approach utilized in this research is organized into
multiple essential phases to guarantee a systematic and
repeatable evaluation process. Every phase is intended to
meet particular goals, encompassing data preparation,
feature creation, predictive modeling, and performance
assessment. The comprehensive account of every
methodological phase is outlined below

3.1. Data Collection

This study uses three main sources of data that are
integrated with each other, namely dengue fever case
data, climate data, and population density data. Dengue
fever case data was obtained from regional health
agencies and includes the number of cases per subdistrict
in Bandung City on an annual basis. Climate data includes
variables such as average temperature, average
humidity, and rainfall obtained from the Meteorology,
Climatology, and Geophysics Agency (BMKG).
Meanwhile, population density data per subdistrict is
obtained from the Central Statistics Agency (BPS). The
three datasets are then combined based on geographical
(subdistrict) and time period (year) compatibility to form
a DHF case prediction dataset.

3.2. Data Preprocessing

Preprocessing steps are carried out to ensure data quality
and consistency before further analysis. This process
includes data cleaning by removing duplicate data and
irrelevant columns, as well as handling missing values
using an appropriate imputation approach. In addition,
categorical columns such as subdistrict names are
encoded using one-hot encoding so that they can be
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processed by machine learning algorithms. Numeric
feature normalization is also applied to equalize the scale
between variables, especially in models that are sensitive
to data scale.

3.3. Exploratory Data Analysis
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Fig. 2. Distribution of dengue

Figure 2 shows a right-skewed pattern, where most
subdistricts have low to moderate numbers of cases,
while a few subdistricts experience very high numbers
of cases. This indicates an imbalance in the distribution
of dengue fever cases between subdistricts, which may
be influenced by environmental and demographic
factors.
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Fig. 3. Distribution of population density

Figure 3 also asymmetrical and tends to be skewed to
the right, with the majority of subdistricts having
medium density levels. Several subdistricts with very
high density have the potential to become areas at risk
of an increase in dengue fever cases due to greater
human interaction.
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Fig. 4. Distribution of average temperature

Figure 4 is relatively narrow and concentrated,
indicating that temperature variations between
subdistricts and years are not particularly large.
Nevertheless, these small differences in temperature
range are still relevant because they can affect the life
cycle of mosquito vectors that cause dengue fever.
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Fig. 5. Distribution of average humidity

Figure 5 shows a multimodal pattern with
concentrations of values in the medium to high
humidity range. This condition indicates that variations
in humidity levels between regions and over time have
the potential to play an important role in creating an
environment that supports the development of
mosquito vectors that cause dengue fever.
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Fig. 6. Distribution of Rainfall

Figure 6 shows a multimodal pattern, indicating
variations in rainfall conditions between periods and
regions. High rainfall values have the potential to create
an environment conducive to mosquito breeding,
making them a relevant predictor of dengue fever cases.

3.4. Feature Engineering

In order for the model to capture more complex
patterns, we perform feature engineering. This process
is done by adding new relevant features. These
interaction features are created from combinations of
climate variables, such as the interaction between
rainfall and humidity, as well as temperature and
humidity. Then, we apply non-linear transformations,
such as squaring the temperature values and
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performing logarithmic transformations on population
density. In addition, we also add epidemiological ratios,
namely the number of dengue fever cases per
population, to show the relative risk. Temporal features
are also constructed using the lag of dengue fever cases
in the previous year and the rolling mean to capture
temporal patterns between years.

3.5. Modeling

The dataset was divided into training and testing sets,
where 80% of the data were utilized for model training
and the remaining 20% were reserved for model
evaluation. This strategy was adopted to assess the
generalization capability of the models on unseen data.
To further ensure the robustness and stability of the
predictive performance, k-fold cross-validation was
applied during the training phase.

Random Forest regression is used as the first ensemble
learning model because of its robustness in modeling
nonlinear relationships and feature interactions that are
often found in epidemiological data. Random Forest is a
bagging-based ensemble method that builds decision trees
independently using bootstrap samples and random feature
selection. The final prediction is obtained by aggregating
the predictions from all individual trees, which effectively
reduces variance and reduces overfitting [16].
Mathematically, the Random Forest regression prediction is
defined as Eq (1).

§e) =1/ EE =D"f(x) 1)

where T denotes the total number of decision tree and
f+(x) represents the prediction of the (t — th) decision
tree for input x.

Extreme Gradient Boosting (XGBoost) is applied as a
boosting-based ensemble model to improve prediction
accuracy. XGBoost builds decision trees sequentially,
where each new tree is trained to minimize the residual
error of the previous ensemble. Unlike Random Forest,
XGBoost optimizes a regularized objective function that
balances prediction accuracy and model complexity
[17]. The XGBoost objective function is formulated as Eq

(2).
L=3%@=D"Q,9) + Lk = D*2(f) (2)

where [(y;, §;) is the loss function (squared error for
regression), f; represents the(k = th) decision tree
0(fy)is the regularization term defined as Eq (3).

Q(f) =yT + @/DAX[G = D'wf (3)

with T denoting the number leaves in the tree, w;
representing the leaf weights, and y and A acting as
regularization parameters to control model complexity
By employing both Random Forest and XGBoost, this
study provides a comparative analysis between
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bagging-based and  boosting-based  ensemble
approaches, enabling a comprehensive evaluation of
their effectiveness in predicting dengue cases using
climate and demographic features.

3.6. Evaluation

The performance of the proposed models was evaluated
using the coefficient of determination (R?) and the Root
Mean Squared Error (RMSE). The R? metric measures
the proportion of variance in the actual dengue case
data that can be explained by the model predictions and
is defined as Eq (4).

1(?2)= 1-Q@E=D"0: - 9))/C0E =" =9

4

where y; represents the actual value, y; denotes the
predicted value, and y is the mean of the observed
values. In addition, RMSE was used to quantify the
average magnitude of prediction errors in the original
scale of the target variable, which is formulated as

3.7. Explainable Al

To improve model interpretability, the Explainable Al
approach was applied using SHAP (SHapley Additive
exPlanations). SHAP analysis was used to identify the
contribution of each feature to the prediction of DHF
cases, thereby providing a more transparent
understanding of the most influential factors in the
prediction model.

4. RESULTS AND DISCUSSIONS

4.1. Results

To assess the performance of the Dengue Hemorrhagic
Fever (DHF) case prediction model, this study conducted
a comparative evaluation of two machine learning
algorithms, namely Random Forest and XGBoost. The
evaluation was carried out using the R-square (R?) and
Root Mean Square Error (RMSE) metrics to provide a
comprehensive overview of the model's ability to explain
data variability and the level of prediction error against
actual values. The use of these two metrics allows for a
more objective analysis of model performance, both in
terms of the accuracy of data pattern representation and
the numerical accuracy of prediction results. The results
of the comparison of the performance of the two models
are summarized in Table 1.

TABLE 1. Compared evaluation model of machine learning.

Evaluation
Model Rz RMSE
Random Forest 0.9032 2.3748
XGBoost 0.9520 1.6663
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Based on the evaluation results shown in Table 1, the
XGBoost model produced a higher R-square value of
0.9520 compared to Random Forest, which obtained a
value of 0.9032. This finding indicates that XGBoost has a
stronger ability to explain the variability of Dengue
Hemorrhagic Fever (DHF) case data, so that the
relationship pattern between input variables and the
number of cases can be represented more complexly. In
addition, the lower RMSE value in XGBoost, which is
1.6663, indicates a smaller prediction error rate
compared to Random Forest with an RMSE of 2.3748.
Numerically, these results suggest that XGBoost provides
predictions that are closer to the actual values. However,
this difference in performance needs to be analyzed
further by considering the learning characteristics of the
model and its potential for generalization, given that the
high evaluation value at this stage does not fully reflect
the stability of the model when faced with different data.
Learning Curve — Random Forest
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Fig. 7. Learning Curve of Random Forest
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Fig. 8. Learning Curve of XGBoost

The learning curve analysis in both figures shows a clear
difference in learning characteristics between the
XGBoost and Random Forest models. In XGBoost, the

Published by Maheswari Publisher

Vol. 1 No.2 January 2026
E-ISSN: 3132-5115
DOI: 10.65780/bima.v1i2.10

training data R-square curve shows a very high value
even with a relatively small amount of training data and
tends to stabilize as the number of samples increases.
Meanwhile, the validation curve experiences a gradual
increase and only approaches the training curve when
the training data size becomes larger. This pattern
indicates that XGBoost has high model capacity and is
able to capture complex patterns quickly, but in the
early stages of learning, there is still a gap between
training and validation performance, reflecting a
potential tendency toward overfitting.

Unlike XGBoost, Random Forest exhibits a more gradual
learning pattern and a better balance between the
training and validation curves. Although the R-square
value on the training data is slightly lower than that of
XGBoost, the improvement in performance on the
validation data is consistent as the number of samples
increases. The gap between the training and validation
curves in Random Forest is relatively smaller, especially
with medium to large training data sizes, indicating a
more stable model generalization ability. This
characteristic is important in the context of dengue case
prediction, which is influenced by temporal variability
and dynamic environmental factors.

Overall, the learning curve results confirm that although
XGBoost excels in terms of numerical performance,
Random Forest exhibits more robust and reliable
learning behavior in response to changes in data
volume. This finding reinforces the basis for selecting
Random Forest as a more suitable model for further
analysis, particularly in the context of interpretability
using the Explainable Artificial Intelligence (XAI)
approach, where model stability and consistency are
crucial aspects.
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Figure 9 shows that temporal-based variables and
previous case dynamics, such as DHF_roll3 and
DHF_growth, have the most dominant influence on
model predictions. Positive SHAP values on these
features indicate that an increase in case trends in the
previous period contributes significantly to an increase
in DHF case predictions in the following period. This
finding confirms that historical case patterns are the
main determinants in the formation of predictions, in
line with the characteristics of DHF spread, which is
seasonal and has a strong temporal dependence.
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Fig. 10. SHAP bar plot

Figure 10 displays the SHAP feature importance plot
based on the absolute mean SHAP value (mean |SHAP
value|), which represents the magnitude of each
variable's contribution to the overall Random Forest
model prediction. The visualization results show that
DHF _roll3 is the most dominant feature, followed by
DHF_growth, confirming that historical information and
the dynamics of DHF case growth play a major role in
shaping predictions. The large SHAP values for these
two variables indicate that the model is highly
dependent on short-term temporal patterns to capture
trends in the increase or decrease of cases.

On the other hand, climate and environmental variables,
such as the temperature x humidity interaction and case
lag variables (kasus_lagl and kasus_lag2), provide
additional contributions with a more moderate level of
influence. Meanwhile, demographic variables and
spatial indicators based on subdistricts show relatively
small importance values, indicating that their role is
more contextual than a major driver of predictions.
Overall, these results reinforce previous XAl findings
that the Random Forest model prioritizes temporal
factors as the main determinants, with environmental
variables serving as supporting factors in modeling the
dynamics of dengue fever spread.
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Fig. 11. SHAP dependence plot

Figure 11 is a SHAP dependence plot that shows the
relationship between the DHF _roll3 feature value and
its contribution to the Random Forest model prediction.
The pattern formed shows an almost monotonic
relationship, where an increase in the DHF_roll3 value
is followed by an increase in the SHAP value, indicating
that the DHF case trend in the previous three periods
directly contributes to an increase in case predictions in
the following period. The coloring of the points based on
the kasus_lagl variable shows an interaction between
features, indicating that the influence of DHF_roll3 can
be amplified or modulated by the number of cases in the
previous period. This finding confirms that the model
utilizes a combination of short-term historical
information to capture the dynamics of DHF spread in a
non-linear and epidemiologically consistent manner.

4.2. Discussions

This research provides a notable contribution by
simultaneously addressing predictive performance,
learning stability, and model interpretability. Earlier
studies have demonstrated the effectiveness of machine
learning models, particularly ensemble methods, in
capturing non-linear relationships between climate
variables and dengue incidence. For example, Tian et al.
reported that XGBoost achieved strong predictive
performance when applied to meteorological data for
dengue prediction, highlighting the advantage of
boosting-based algorithms in modeling complex
environmental interactions [12]. Similarly, Maulana and
Sari showed that ensemble learning approaches,
including Random Forest and XGBoost, are capable of
producing competitive prediction results for dengue
spread modeling [13]. However, these studies primarily
focused on performance metrics, with limited
discussion on model robustness and interpretability.

Consistent with previous findings, the results of this
study confirm that XGBoost achieves superior
numerical performance, as indicated by a higher
coefficient of determination and lower prediction error
compared to Random Forest. This outcome supports
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prior evidence that boosting-based models are effective
in capturing complex and non-linear patterns in
epidemiological data [12],[13]. Nevertheless, this
research extends beyond conventional performance
evaluation by incorporating learning curve analysis. The
learning curve results reveal that Random Forest
exhibits more stable learning behavior and smaller gaps
between training and validation performance,
suggesting better generalization capability. This aspect
has been largely overlooked in prior dengue prediction
studies, which often report high accuracy without
sufficient assessment of model stability on unseen data.
Another important gap in earlier research relates to the
limited application of systematic feature engineering.
Many previous studies rely on raw climate or
demographic variables, or use them independently,
without fully exploiting temporal dependencies and
interaction effects [7],[8]. In contrast, this study
demonstrates that feature engineering techniques,
including temporal lag features, rolling statistics, case
growth rates, and climate interaction variables,
substantially improve data representation. The
prominence of engineered temporal features in the
prediction results confirms that these transformations
successfully capture the seasonal and temporal
dynamics of dengue transmission, which are widely
recognized in epidemiological literature [5].

Moreover, while recent studies have begun to
incorporate  Explainable  Artificial Intelligence
approaches such as SHAP to improve interpretability,
their application in conjunction with ensemble learning
models remains limited, particularly at the urban scale
[11]. This research addresses this limitation by applying
SHAP to the Random Forest model, enabling
transparent interpretation of feature contributions. The
XAl results indicate that historical case trends are the
most influential determinants of dengue predictions,
followed by climate interaction variables, findings that
are consistent with established knowledge on dengue
epidemiology and vector dynamics [3],[5]. By
emphasizing interpretability alongside predictive
performance, this study responds to concerns raised in
the literature regarding the lack of transparency in
complex machine learning models used for public health
decision-making [9].

Overall, this study advances existing research by
demonstrating that high predictive accuracy alone is
insufficient for practical implementation in dengue
surveillance  systems. By integrating feature
engineering, comparative ensemble modeling, learning
curve analysis, and explainable Al, this research bridges
key gaps identified in previous studies [7], [11], [13].
The proposed framework Dbalances accuracy,
robustness, and transparency, thereby providing a more
reliable and interpretable foundation for the
development of data-driven dengue early warning
systems at the regional level.
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5. CONCLUSIONS

This study compares the performance of the XGBoost and
Random Forest models in predicting the number of
Dengue Hemorrhagic Fever (DHF) cases using the R-
square (R?) and Root Mean Square Error (RMSE) metrics.
The evaluation results show that XGBoost produces the
best numerical performance with an R? value of 0.9520
and an RMSE of 1.6663, while Random Forest obtains an
RZ%value 0f 0.9032 and an RMSE of 2.3748. This difference
indicates that XGBoost has a stronger ability to capture
complex patterns in the data. However, learning curve
analysis shows that Random Forest has a more stable and
consistent learning pattern between training and
validation data, thus demonstrating better generalization
capabilities on unseen data.

In addition to the model's performance achievements,
this study also shows that the feature engineering
strategy applied successfully improved the quality of data
representation. This is reflected in the dominance of
temporal features and transformed variables, such as
rolling statistics, case growth, and interactions between
climate variables, which consistently emerged as major
contributors to model predictions based on Explainable
Artificial Intelligence (XAI) analysis. The interpretation of
the Random Forest model shows that the integration of
historical case features and environmental factors
produces stable predictions and explanations that are
consistent with the epidemiological characteristics of
DHF. Thus, this study confirms that the combination of
appropriate feature engineering, reliable prediction
models, and interpretability approaches provides a
strong foundation for the development of accurate and
transparent DHF prediction systems to support decision-
making at the regional level.
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