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Abstract. Obesity is a global public health challenge associated with increased risks of chronic diseases and significant 
socioeconomic burdens. Conventional obesity classification relies predominantly on body mass index (BMI), which is 
static and insufficient to capture the multidimensional nature of lifestyle and behavioral factors. This study aims to 
develop an adaptive and interpretable machine learning–based framework for multiclass obesity classification that 
addresses the limitations of BMI-centered approaches. An optimized Logistic Regression model is proposed and 
evaluated using anthropometric and lifestyle-related features, including dietary habits and physical activity patterns. The 
methodology involves comprehensive data preprocessing, feature encoding, stratified data splitting, hyperparameter 
optimization, and performance evaluation using confusion matrix analysis, learning curves, and SHAP-based 
interpretability. Experimental results demonstrate that the optimized Logistic Regression model achieves a high 
classification accuracy of 94.26% on the test dataset, accompanied by stable generalization performance, as indicated by 
a relatively small generalization gap between training and validation data. Learning curve analysis confirms robust 
learning behavior without significant overfitting, while SHAP analysis reveals that both anthropometric and lifestyle 
features contribute meaningfully to classification decisions. The findings indicate that Logistic Regression offers a 
balanced trade-off between predictive performance, generalization ability, and interpretability. This study demonstrates 
that an interpretable, data-driven machine learning approach can serve as a reliable alternative to conventional obesity 
classification frameworks and support decision-making in health-related applications. 
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1. INTRODUCTION 

Obesity is one of the global health problems that has 
increased significantly in recent decades and has become 
a major focus of attention for world health organizations 
[1]. This condition is not only associated with an increased 
risk of non-communicable diseases such as type 2 diabetes 
mellitus, cardiovascular disease, hypertension, and other 
metabolic disorders, but also has a direct impact on 
reduced quality of life and increased economic and social 
burdens in various countries [2]. The complexity of 
obesity as a multifactorial phenomenon influenced by diet, 
physical activity, genetic factors, lifestyle, and 
environment makes it a major challenge in effective 
prevention and treatment efforts [3]. Therefore, an 
analytical approach is needed that can accurately identify 
and classify obesity levels as a basis for data-driven 
medical and health policy decisions [4]. 
In the context of digital technology development and the 
increasing availability of health data, approaches based on 
Machine Learning (ML) and Data Science offer great 

potential for improving the accuracy of obesity status 
analysis and prediction [5]. Unlike conventional statistical 
methods, which often rely on linearity assumptions and 
limitations in capturing complex relationships between 
variables [6], Machine Learning algorithms are able to 
model non-linear patterns and multidimensional 
interactions more effectively [7]. However, the application 
of Machine Learning in obesity classification still faces a 
number of challenges, including class imbalance, data 
heterogeneity, complex feature correlations, and the need 
for models that are not only accurate but also stable and 
interpretable [8]. These challenges require careful model 
design and selection of relevant algorithms and features 
so that classification results can be relied upon in practical 
contexts [9]. 
Furthermore, obesity classification cannot be viewed as a 
binary problem, but rather as a multi-class problem that 
reflects various levels of physical condition, ranging from 
normal weight to advanced obesity [10]. This adds to the 
complexity of modeling because each class has 
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overlapping characteristics and is not always clearly 
separated [11]. Obesity datasets containing attributes of 
eating behavior, physical activity, and demographic 
characteristics provide opportunities as well as challenges 
in extracting meaningful information [12]. Therefore, a 
computational approach is needed that can optimally 
utilize the richness of these features without sacrificing 
model generalization [13]. 
Based on this background, this study aims to develop and 
evaluate a Machine Learning-based obesity classification 
model using an obesity dataset that includes lifestyle 
variables, consumption habits, and individual 
characteristics. The main focus of this study is to examine 
the ability of Machine Learning algorithms to classify 
obesity levels accurately and consistently, as well as to 
identify features that have a significant contribution to the 
classification results. Model performance evaluation is 
carried out using metrics relevant to multi-class 
classification to ensure the reliability and validity of the 
results obtained  
The main contribution of this study lies in presenting a 
comprehensive analysis of the application of Machine 
Learning for obesity classification with a systematic data-
based approach. This study not only emphasizes the 
achievement of model accuracy but also the 
understanding of data characteristics and challenges 
inherent in obesity classification. The results of this study 
are expected to provide valuable scientific insights for 
researchers in the fields of Data Science and digital health, 
as well as serve as a reference in the development of 
artificial intelligence-based decision support systems for 
obesity detection and prevention. Thus, this study is 
expected to contribute to efforts to utilize Machine 
Learning technology more effectively to support 
preventive and promotive health strategies in the future. 

2. RELATED WORK 

Previous research on obesity in general has been 
dominated by clinical and epidemiological approaches 
that emphasize the use of anthropometric indicators, 
particularly body mass index (BMI), as the basis for 
classification and diagnosis. Ferrulli emphasizes that BMI 
is the primary instrument for identifying obesity, while 
also describing various obesity phenotypes that reflect the 
heterogeneity of the condition [14]. Although this study 
provides a comprehensive conceptual understanding of 
the characteristics of obesity, the discussion of 
classification is still descriptive and does not explore 
computational approaches or data-based modeling. Thus, 
although relevant in a medical context, this approach has 
not been able to capture the complexity of the non-linear 
relationships between lifestyle variables and behaviors 
that contribute to obesity. 
In line with this, Bonsu emphasized obesity as a significant 
global health problem, with the WHO and CDC adopting a 

BMI threshold of ≥30 kg/m² as the standard for classifying 
obesity in the adult population [15]. These studies 
reinforce the role of BMI as the primary metric in 
assessing weight-related health risks. However, this single 
threshold-based approach has limitations in 
distinguishing the severity of obesity and ignores 
multidimensional behavioral and lifestyle factors. In 
addition, conventional methods tend to be static and less 
adaptive to individual variations, potentially resulting in 
less precise classifications when applied to datasets with 
complex characteristics. 
More recent research, such as the study by Yackobovitch-
Gavan, has begun to reveal inconsistencies in obesity 
classification between WHO and CDC standards, 
particularly in younger populations, with significant 
differences in determining weight status based on BMI z-
scores [16]. These findings indicate that reliance on a 
single classification approach can lead to bias and 
inconsistency in the interpretation of obesity data. 
However, these studies still focus on comparing 
classification frameworks and have not integrated 
Machine Learning approaches to address these issues 
predictively. Therefore, there is a clear research gap in the 
development of Machine Learning-based obesity 
classification models that can simultaneously utilize 
various lifestyle features and individual characteristics. 
This study fills that gap by offering a data-driven multi-
class classification approach that not only overcomes the 
limitations of conventional BMI but also contributes to the 
development of a more adaptive, accurate, and relevant 
obesity classification system to support artificial 
intelligence-based decision making. 

3. METHODS 

This study method is systematically designed to perform 
multi-class obesity classification based on machine 
learning, as shown in Figure 1. The main stages include 
data collection and pre-processing, feature exploration 
and transformation, data partitioning and normalization, 
model development and optimization, performance 
evaluation using various metrics, and interpretation of 
results through the Explainable Artificial Intelligence 
(XAI) approach. 
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Fig. 1. Methodology Pipeline 

3.1. Data Collection 

Table 1 shows the features of the dataset used. This study 
began with data collection using a structured obesity 
dataset that comprehensively represents individual 
characteristics. The dataset includes demographic 
information, anthropometric attributes, and behavioral 
and lifestyle factors, such as age, height and weight, 
dietary patterns, physical activity levels, hydration habits, 
and daily modes of transportation. The target variable 
used was NObeyesdad, which classified weight status into 
seven categories, ranging from Insufficient Weight to 
Obesity Type III. This stage aimed to ensure the 
availability of relevant, representative, and adequate data 
to support the problem of multi-class obesity 
classification. 

TABLE 1. Feature Dataset 
No Feature Description 
1 Gender Individual’s gender 
2 Age Individual’s age 
3 
4 
5 

 
6 
 

7 
 

8 
 
 

9 
10 
11 

Height 
Weight 

Family_history_wit
h_overweight 

FAVC 
 

FCVC 
 

NCP 
 
 

CAEC 
SMOKE 
CH2O 

Individual’s height 
Individual’s weight 

Has a family member suffered or 
suffers from overweight? 

Do you eat high caloric food 
frequently? 

Do you usually eat vegetables in 
your meals? 

How many main meals do you 
have daily? 

Do you eat any food between 

meals? 

Do you smoke? 

 
12 

 
13 

 
14 

 
 
 

15 
16 

 
17 

 
SCC 

 
FAF 

 
TUE 

 
 
 

CALC 
MTRANS 

 
NObeyesdad 

How much water do you drink 
daily? 

Do you monitor the calories you 
eat daily? 

How often do you have physical 
activity? 

How much time do you use 
technological devices such as cell 

phone, videogames, television, 
computer and others? 

How often do you drink alcohol? 
Which transportation do you 

usually use? 
Obesity level 

3.2. Data Pre-Processing 

The pre-processing stage is carried out to improve data 
quality and consistency prior to the modeling process. 
Initial analysis includes identifying the dataset structure, 
attribute types, and evaluating the existence of missing 
values and data duplication. The results of the 
examination showed that there were no missing values, 
but a number of duplicate entries were found and 
subsequently deleted to avoid distortion of the data 
distribution and potential bias in the model training 
process.  In addition, descriptive statistics were 
used to obtain an initial overview of the distribution and 
characteristics of numerical features. 

3.3. Exploratory Data Analysis 

Exploratory Data Analysis was conducted to understand 
the distribution patterns of the data and the relationships 
between variables. Analysis of the target variable 
distribution shows that the proportion of obesity classes 
is relatively balanced, which is an important condition in 
multi-class classification. Numerical features are analyzed 
through distribution visualization and correlation 
matrices to identify potential linear relationships, while 
categorical features are analyzed based on the proportion 
of each category. This stage provides initial insights into 
the relationship between lifestyle factors and obesity 
status. 

 

Fig. 2. Target Class Distribution 
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Figure 2 shows the distribution of the NObeyesdad target 
class, where all obesity categories have a relatively 
balanced number of samples, so the dataset is considered 
adequate for the task of multi-class obesity classification 
without any indication of significant class imbalance. 

 

Fig. 3. Distribution of key numerical features 

Figure 3 shows the distribution of key numerical features, 
namely age, height, and weight, which indicate a 
reasonable spread of data and adequately represent 
individual variations for obesity classification analysis. 

 

Fig. 4. Correlation Matrix  

Figure 4 shows that most numerical features have low to 
moderate correlations, with the most notable relationship 
being between height and weight, indicating no strong 
multicollinearity and supporting the use of nonlinear 
machine learning models. 

3.4. Feature Selection 

At this stage, independent variables are separated from 
target variables to form a feature matrix (X) and labels (y). 
Feature selection is performed by retaining all clinically 
and statistically relevant attributes. This approach aims to 
ensure that important information contributing to obesity 

classification is not prematurely eliminated. All 
categorical features are converted into numerical 
representations using label encoding techniques to be 
compatible with Machine Learning algorithms. Target 
variables are also encoded to support multi-class 
classification schemes.  

3.5. Data Transformation 

Data transformation was performed by evaluating the 
presence of outliers using the Interquartile Range (IQR) 
method. Although a number of extreme values were 
identified, the data was not aggressively deleted because, 
in the context of obesity, extreme values can reflect real 
and relevant physiological conditions. Therefore, the 
original data distribution was retained to maintain the 
clinical validity and representativeness of the dataset. 

3.6. Split Data 

The dataset was divided into training and testing sets 
using a stratified split approach. This technique was 
applied to ensure that the proportion of each obesity class 
remained consistent in both subsets. Thus, model 
performance evaluation could be carried out more 
objectively and the results could be better generalized. 

3.7. Scaling 

Numeric feature normalization is performed using 
StandardScaler, so that each feature has a mean of zero 
and a standard deviation of one. This step is particularly 
important for algorithms that are sensitive to data scale, 
such as Support Vector Machine and K-Nearest Neighbors, 
and contributes to accelerating the convergence process 
during model training. 

3.8. Modelling 

The modeling stage is the core of this study, in which ten 
Machine Learning algorithms are applied and compared 
systematically, including Logistic Regression, Decision 
Tree, Random Forest, Gradient Boosting, Support Vector 
Machine, K-Nearest Neighbors, Naive Bayes, AdaBoost, 
Extra Trees, and XGBoost as shown in Figure 5. Each 
model was configured with initial parameters designed to 
minimize the risk of overfitting. Evaluation was 
performed using various performance metrics, including 
accuracy, precision, recall, F1-score, and cross-validation, 
to assess the stability and generalization ability of the 
model.  
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Fig. 5.  Stacking Ensemble Architecture 

3.9. Optimization 

To improve model performance and robustness, 
hyperparameter optimization was performed using the 
Grid Search method. This process enabled systematic 
exploration of the best parameter combinations for each 
algorithm. The evaluation results showed that several 
models experienced increased accuracy and a decrease in 
overfitting gap, confirming the importance of the tuning 
process in the development of Machine Learning-based 
classification systems. 

3.10. Explainable Artificial Intelligence (XAI) 

In an effort to improve transparency and trust in the 
model, the Explainable Artificial Intelligence (XAI) 
approach was applied to the best model. The analysis was 
conducted using the SHAP (SHapley Additive 
exPlanations) method to identify the contribution of each 
feature to the model's predictions. This approach allows 
for a more in-depth interpretation of the dominant factors 
that influence obesity status classification, so that the 
model results are not only predictive but also scientifically 
explainable and relevant in the context of health decision-
making. 

4. RESULTS AND DISCUSSIONS 

This section presents the results of obesity classification 
experiments. A comparative evaluation across multiple 
machine learning models is first reported to justify model 
selection, followed by an in-depth analysis of the 
optimized Logistic Regression model in a multi-class 
classification scheme. The evaluation focuses on three 
main aspects, namely prediction performance and 
classification error patterns, model generalization ability 
based on learning curve analysis, and model 
interpretability through feature contribution analysis. All 
results are presented to compare model performance 
before and after hyperparameter optimization. 
 

4.1. Comparative Performance of Machine Learning 
Models 

Before discussing the classification results in depth, a 
performance comparison was conducted against several 
commonly used Machine Learning algorithms, including 
Decision Tree, Random Forest, Gradient Boosting, and 
Support Vector Machine, both before and after the 
optimization process. Table 2 shows that some ensemble-
based models were able to achieve very high training 
accuracy after optimization. However, this improvement 
was often accompanied by a relatively large overfitting 
gap, which indicates a decrease in generalization ability on 
the test data. In contrast, Logistic Regression showed 
consistent performance improvement between training 
and testing data, with a relatively small and stable 
accuracy gap. After optimization, this model achieves 
competitive testing accuracy compared to other models, 
accompanied by a controlled overfitting gap. These 
findings indicate that Logistic Regression has a better 
balance between predictive performance and 
generalization ability. Furthermore, compared to more 
complex models, Logistic Regression offers a higher level 
of interpretability and more stable learning behavior, as 
will be discussed further through learning curve and SHAP 
analysis. Based on these considerations, Logistic 
Regression was selected as the final model in this study, as 
it provides the most optimal compromise between 
accuracy, stability, and transparency in the context of 
obesity classification based on health data. 

TABLE 2. Model Comparison Results 

Model 
Train_ 

Acc 
Test_ 
Acc 

Overfit_ 
Gap 

Improvement 

Logistic Regression 
(Before) 

0.89 0.89 0.005 

0.052 
Logistic Regression 

(After) 
0.95 0.94 0.016 

Decision Tree (Before) 0.82 0.81 0.006 
0.105 

Decision Tree (After) 0.93 0.92 0.11 

Random Forest (Before) 0.93 0.89 0.036 
0 

Random Forest (After) 0.93 0.89 0.034 

Gradient Boosting 
(Before) 

0.93 0.89 0.038 

0.045 

Gradient Boosting (After) 0.99 0.94 0.052 

SVM (Before) 0.94 0.88 0.065 
0.040 

SVM (After) 0.96 0.92 0.39 

KNN (Before) 1.00 0.80 0.19 
0.052 

KNN (After) 1.00 0.85 0.14 

Naive Bayes (Before) 0.59 0.59 -0.0061 

0 
Naive Bayes (After) 0.59 0.59 0.0055 
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Model 
Train_ 

Acc 
Test_ 
Acc 

Overfit_ 
Gap 

Improvement 

AdaBoost (Before) 0.41 0.42 -0.0094 
0.0359 

AdaBoost (After) 0.45 0.46 0.0076 

Extra Trees (Before) 0.85 0.82 0.0338 
-0.0096 

Extra Trees (After) 0.84 0.81 0.0356 

XGBoost (Before) 0.91 0.89 0.0226 0.0622 

XGBoost (After) 0.98 0.95 0.0341 

 

4.2. Model Performance and Confusion Matrix 
Analysis 

Figure 6 shows that the Logistic Regression model before 
optimization achieved a testing accuracy of 0.8900. The 
confusion matrix shows that most obesity classes can be 
classified well, especially in the Obesity Type I, Obesity 
Type II, and Obesity Type III categories, which show low 
classification error rates. However, relatively high 
misclassification was still found in classes with clinically 
similar characteristics, especially between Normal 
Weight, Overweight Level I, and Overweight Level II. This 
pattern indicates the limitations of linear models in 
separating classes with overlapping feature distributions. 
 

 
Fig. 6. Logistic Regression Before Optimization 

 
After hyperparameter optimization, as shown in Figure 7. 
The model's performance improved significantly with a 
testing accuracy of 0.9426. The post-optimization 
confusion matrix showed an increase in the number of 
correct predictions in almost all classes, especially in the 
Normal Weight and Overweight Level II classes, which 
previously had higher error rates. The decrease in 
misclassification between adjacent classes indicates that 
the optimization successfully improved the model's 
discriminatory ability without causing overfitting. These 
results confirm that the right parameter configuration 

plays a crucial role in improving the performance of 
Logistic Regression in multi-class obesity classification 
problems. 
 

 
Fig. 7. Logistic Regression After Optimization 

4.3. Learning Curve Analysis and Generalization 
Ability 

Learning curve analysis was performed to evaluate the 
learning behavior of the model and its generalization 
ability to unseen data. Before optimization, as shown in 
Figure 8. The curve showed that the training score 
increased gradually and stabilized at a value close to 0.89 
as the training data size increased. The cross-validation 
score on small data sizes was still relatively low but 
increased consistently as more data was added. The gap 
between the training and cross-validation curves was 
relatively small, with a generalization gap value of 0.0205, 
indicating that the model did not experience significant 
overfitting, but still had moderate bias. 
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Fig. 8. Learning Curve of Logistic Regression before optimization 

 
After optimization, Figure 9 shows a consistent 
improvement in both curves. The training score increases 
to exceed 0.95, while the cross-validation score reaches a 
value close to 0.94 on a larger training data size. The 
convergence between the two curves becomes more 
stable, with a generalization gap of 0.0214. The very small 
change in the gap (Δ = −0.0009) indicates that the 
improvement in model performance is not accompanied 
by an increase in variance, but rather comes from a more 
optimal parameter configuration. 

 
Fig. 9.  Learning Curve of Logistic Regression after optimization 

 
In addition, the reduction in fluctuations in the cross-
validation curve after optimization indicates an increase 

in model stability against training data variation. This 
confirms that the optimized Logistic Regression model is 
able to utilize additional data more efficiently and has a 
better bias–variance balance. Thus, the learning curve 
analysis confirms that the increase in accuracy obtained is 
robust and generalizable. 

4.4. Model Interpretability Based on SHAP Analysis 

To improve transparency and confidence in the 
classification results, model interpretability analysis was 
performed using the SHAP approach.  The SHAP summary 
in the result plot of Figure 10 show that the Weight feature 
has the most dominant contribution to the classification 
decision, followed by Height and Gender. The dominance 
of these anthropometric features is consistent with the 
conventional clinical approach that places weight and 
height as the main indicators in assessing obesity status. 

 
Fig. 10. Explainable AI  

In addition, behavioral features such as FCVC (frequency 
of vegetable consumption), FAF (physical activity), and 
CH2O (water consumption) also contributed to the 
model's predictions, albeit to a lesser extent. The 
distribution of SHAP values shows that feature 
contributions vary between classes, indicating that the 
model does not rely on a single variable but combines 
various factors to distinguish different levels of obesity. 
These findings show that Logistic Regression not only 
produces accurate predictions but also maintains a high 
level of interpretability. This is an important advantage in 
the context of health applications, where understanding 
the basis of the model's decision-making is a crucial 
aspect. 
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4.5. Discussions 

Previous studies on obesity classification have 
predominantly relied on Body Mass Index (BMI) as the 
primary indicator, as highlighted in works by Ferrulli, 
Bonsu, and others. While this approach offers simplicity 
and ease of implementation, it remains inherently static 
and insufficient to reflect the multifaceted nature of 
obesity, particularly with respect to behavioral and 
lifestyle influences. Furthermore, findings reported by 
Yackobovitch-Gavan reveal notable discrepancies 
between World Health Organization (WHO) and Centers 
for Disease Control and Prevention (CDC) classifications, 
underscoring potential inconsistencies and biases 
associated with single-threshold BMI-based 
categorization. 
In contrast to these conventional methods, the present 
study proposes a multi-class machine learning framework 
that simultaneously incorporates anthropometric and 
lifestyle-related features. This integrated approach 
enables a more nuanced representation of obesity status 
by capturing interactions among multiple determinants. 
Experimental evaluations demonstrate that, following 
model optimization, the proposed framework achieves 
consistently high classification accuracy while 
significantly reducing misclassification among clinically 
adjacent categories, such as Normal Weight and 
Overweight, which are often problematic in traditional 
BMI-based schemes. 
An important contribution of this study lies in the 
evaluation of model learning behavior and generalization 
performance. The learning curve analysis indicates that 
the optimized Logistic Regression model exhibits not only 
improved predictive accuracy but also stable 
generalization across training and validation data. The 
relatively small generalization gap observed before and 
after optimization suggests that the performance gains are 
robust and not driven by overfitting or dataset-specific 
characteristics. This aspect distinguishes the present 
work from earlier studies, which typically focus on final 
accuracy metrics without examining learning dynamics or 
generalization risk. 
Despite employing a machine learning-based 
methodology, the proposed model retains interpretability 
through SHAP-based analysis. The prominence of weight 
and height as dominant features is consistent with 
established clinical literature, reaffirming the relevance of 
anthropometric indicators in obesity assessment. At the 
same time, the observed contributions of lifestyle 
factors—such as physical activity levels and dietary 
patterns—highlight the model’s ability to capture 
dimensions of obesity that are frequently overlooked in 
traditional approaches. Consequently, this study bridges 
the gap between classical clinical frameworks and modern 
data-driven techniques, offering an interpretable and 
empirically grounded solution that has the potential to 

support more comprehensive and evidence-based 
decision support systems. 

TABLE 3. Study Comparison 

Aspect Previous Research This Study 

Classification 
basis 

BMI and BMI z-score 
(WHO, CDC) [16] 

Multivariate 
(anthropometric + 

lifestyle) 

Types of 
approaches 

Clinical, epidemiological, 
descriptive [15] 

Data-based machine 
learning 

Class 
granularity 

Generally binary or limited 
[14] 

Multi-class (7 levels 
of obesity) 

Adaptability to 
data 

Static (fixed cut-off) [15] Adaptive through 
model learning 

Generalization 
evaluation 

Not analyzed [14] Learning curve & 
CV 

Interpretability Based on clinical rules [16] SHAP (feature 
attribution) 

 

Table 3 confirms that this study differs significantly from 

previous studies in that it applies a data-based machine 

learning approach and multivariate variables, thereby 

producing a more detailed and adaptive multi-class obesity 

classification. 

5. CONCLUSIONS 

This study aims to develop and evaluate a Machine 
Learning-based obesity classification approach that can 
overcome the limitations of conventional approaches 
based on body mass index (BMI), which are static, 
descriptive, and less adaptive to the complexity of lifestyle 
factors. Based on the results of experiments and analyses 
conducted, the study objective was effectively achieved 
through the application of an optimized Logistic 
Regression model in a multi-class obesity classification 
scheme. 
The evaluation results showed that hyperparameter 
optimization significantly improved model performance, 
as reflected in increased classification accuracy and a 
decrease in the misclassification rate between obesity 
classes with clinically similar characteristics. Confusion 
matrix analysis confirms that the model is able to 
distinguish seven levels of weight status more 
consistently than a single threshold-based approach. In 
addition, learning curve analysis shows that this 
performance improvement is stable and generalizable, 
with a relatively small generalization gap both before and 
after optimization. These findings indicate that the model 
is not only accurate but also has a good bias-variance 
balance. 
The main contribution of this study lies in providing an 
adaptive and transparent data-driven obesity 
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classification framework. Unlike previous studies that 
focused on BMI indicators alone, this study 
simultaneously integrates anthropometric and lifestyle 
behavior features. Interpretability analysis using SHAP 
shows that although weight and height features remain 
dominant factors, lifestyle variables such as physical 
activity and consumption patterns also contribute to 
classification decisions. This reinforces the clinical 
relevance of the model while increasing confidence in the 
prediction results. 
Although various Machine Learning algorithms have been 
evaluated in this study, including tree-based models and 
ensemble methods, Logistic Regression was chosen as the 
main model because it showed the most optimal balance 
between predictive performance, generalization ability, 
and interpretability. The evaluation results show that this 
model achieved competitive accuracy after 
hyperparameter optimization, with a relatively small and 
stable generalization gap based on learning curve 
analysis. These findings indicate that Logistic Regression 
is able to utilize data information efficiently without 
showing a tendency to overfit, a characteristic that is not 
always consistent in more complex models. 
In addition, the main advantage of Logistic Regression lies 
in the level of transparency and ease of model 
interpretation. Integration with SHAP analysis allows for 
clear and consistent explanations of each feature's 
contribution to the classification decision, which is 
particularly important in the context of healthcare 
applications. Compared to other models that are more 
complex and tend to behave as black boxes, Logistic 
Regression provides a better balance between accuracy 
and clarity of decision-making. Therefore, the selection of 
Logistic Regression in this study is not solely based on 
numerical performance, but also on considerations of 
stability, reliability, and practical relevance to support a 
reliable obesity classification system oriented towards 
real-world application. 
Overall, this study shows that a multivariate Machine 
Learning approach can serve as a more adaptive and 
consistent alternative to conventional obesity 
classification frameworks. By combining high predictive 
performance, stable generalization capabilities, and 
adequate interpretability, the proposed model has the 
potential to support the development of artificial 
intelligence-based decision support systems in the field of 
health. These findings are expected to serve as a 
foundation for further study exploring more complex 
models, more diverse datasets, and direct application in 
clinical contexts and data-driven health policy. 
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