Vol. 1 No.2 January 2026
E-ISSN: 3123-5115
DOI: 10.65780/bima.v1i2.11

BIMA

BULLETIN OF INTELLIGENT MACHINES AND ALGORITHMS

Interpretable Multiclass Obesity Classification
Using Optimized Logistic Regression Based on
Anthropometric and Lifestyle Data

Rio Ekaputra Siswal*, Nazha Nur AdilaZ, Natasya Manurung3, Icha Friska Ameylia*

Informatika®234
Universitas Informatika dan Bisnis Indonesia, Bandung, Indonesial234
https://unibi.ac.id/ 123*
rioekaputra.s22@student.unibi.ac.id'*

Abstract. Obesity is a global public health challenge associated with increased risks of chronic diseases and significant
socioeconomic burdens. Conventional obesity classification relies predominantly on body mass index (BMI), which is
static and insufficient to capture the multidimensional nature of lifestyle and behavioral factors. This study aims to
develop an adaptive and interpretable machine learning-based framework for multiclass obesity classification that
addresses the limitations of BMI-centered approaches. An optimized Logistic Regression model is proposed and
evaluated using anthropometric and lifestyle-related features, including dietary habits and physical activity patterns. The
methodology involves comprehensive data preprocessing, feature encoding, stratified data splitting, hyperparameter
optimization, and performance evaluation using confusion matrix analysis, learning curves, and SHAP-based
interpretability. Experimental results demonstrate that the optimized Logistic Regression model achieves a high
classification accuracy of 94.26% on the test dataset, accompanied by stable generalization performance, as indicated by
a relatively small generalization gap between training and validation data. Learning curve analysis confirms robust
learning behavior without significant overfitting, while SHAP analysis reveals that both anthropometric and lifestyle
features contribute meaningfully to classification decisions. The findings indicate that Logistic Regression offers a
balanced trade-off between predictive performance, generalization ability, and interpretability. This study demonstrates
that an interpretable, data-driven machine learning approach can serve as a reliable alternative to conventional obesity
classification frameworks and support decision-making in health-related applications.
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1. INTRODUCTION

Obesity is one of the global health problems that has
increased significantly in recent decades and has become
a major focus of attention for world health organizations
[1]. This condition is not only associated with an increased
risk of non-communicable diseases such as type 2 diabetes
mellitus, cardiovascular disease, hypertension, and other
metabolic disorders, but also has a direct impact on
reduced quality of life and increased economic and social
burdens in various countries [2]. The complexity of
obesity as a multifactorial phenomenon influenced by diet,
physical activity, genetic factors, lifestyle, and
environment makes it a major challenge in effective
prevention and treatment efforts [3]. Therefore, an
analytical approach is needed that can accurately identify
and classify obesity levels as a basis for data-driven
medical and health policy decisions [4].

In the context of digital technology development and the
increasing availability of health data, approaches based on
Machine Learning (ML) and Data Science offer great
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potential for improving the accuracy of obesity status
analysis and prediction [5]. Unlike conventional statistical
methods, which often rely on linearity assumptions and
limitations in capturing complex relationships between
variables [6], Machine Learning algorithms are able to
model non-linear patterns and multidimensional
interactions more effectively [7]. However, the application
of Machine Learning in obesity classification still faces a
number of challenges, including class imbalance, data
heterogeneity, complex feature correlations, and the need
for models that are not only accurate but also stable and
interpretable [8]. These challenges require careful model
design and selection of relevant algorithms and features
so that classification results can be relied upon in practical
contexts [9].

Furthermore, obesity classification cannot be viewed as a
binary problem, but rather as a multi-class problem that
reflects various levels of physical condition, ranging from
normal weight to advanced obesity [10]. This adds to the
complexity of modeling because each class has
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overlapping characteristics and is not always clearly
separated [11]. Obesity datasets containing attributes of
eating behavior, physical activity, and demographic
characteristics provide opportunities as well as challenges
in extracting meaningful information [12]. Therefore, a
computational approach is needed that can optimally
utilize the richness of these features without sacrificing
model generalization [13].

Based on this background, this study aims to develop and
evaluate a Machine Learning-based obesity classification
model using an obesity dataset that includes lifestyle
variables, consumption habits, and individual
characteristics. The main focus of this study is to examine
the ability of Machine Learning algorithms to classify
obesity levels accurately and consistently, as well as to
identify features that have a significant contribution to the
classification results. Model performance evaluation is
carried out using metrics relevant to multi-class
classification to ensure the reliability and validity of the
results obtained

The main contribution of this study lies in presenting a
comprehensive analysis of the application of Machine
Learning for obesity classification with a systematic data-
based approach. This study not only emphasizes the
achievement of model accuracy but also the
understanding of data characteristics and challenges
inherent in obesity classification. The results of this study
are expected to provide valuable scientific insights for
researchers in the fields of Data Science and digital health,
as well as serve as a reference in the development of
artificial intelligence-based decision support systems for
obesity detection and prevention. Thus, this study is
expected to contribute to efforts to utilize Machine
Learning technology more effectively to support
preventive and promotive health strategies in the future.

2. RELATED WORK

Previous research on obesity in general has been
dominated by clinical and epidemiological approaches
that emphasize the use of anthropometric indicators,
particularly body mass index (BMI), as the basis for
classification and diagnosis. Ferrulli emphasizes that BMI
is the primary instrument for identifying obesity, while
also describing various obesity phenotypes that reflect the
heterogeneity of the condition [14]. Although this study
provides a comprehensive conceptual understanding of
the characteristics of obesity, the discussion of
classification is still descriptive and does not explore
computational approaches or data-based modeling. Thus,
although relevant in a medical context, this approach has
not been able to capture the complexity of the non-linear
relationships between lifestyle variables and behaviors
that contribute to obesity.

In line with this, Bonsu emphasized obesity as a significant
global health problem, with the WHO and CDC adopting a
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BMI threshold of 230 kg/m? as the standard for classifying
obesity in the adult population [15]. These studies
reinforce the role of BMI as the primary metric in
assessing weight-related health risks. However, this single
threshold-based  approach  has limitations in
distinguishing the severity of obesity and ignores
multidimensional behavioral and lifestyle factors. In
addition, conventional methods tend to be static and less
adaptive to individual variations, potentially resulting in
less precise classifications when applied to datasets with
complex characteristics.

More recent research, such as the study by Yackobovitch-
Gavan, has begun to reveal inconsistencies in obesity
classification between WHO and CDC standards,
particularly in younger populations, with significant
differences in determining weight status based on BMI z-
scores [16]. These findings indicate that reliance on a
single classification approach can lead to bias and
inconsistency in the interpretation of obesity data.
However, these studies still focus on comparing
classification frameworks and have not integrated
Machine Learning approaches to address these issues
predictively. Therefore, there is a clear research gap in the
development of Machine Learning-based obesity
classification models that can simultaneously utilize
various lifestyle features and individual characteristics.
This study fills that gap by offering a data-driven multi-
class classification approach that not only overcomes the
limitations of conventional BMI but also contributes to the
development of a more adaptive, accurate, and relevant
obesity classification system to support artificial
intelligence-based decision making.

3. METHODS

This study method is systematically designed to perform
multi-class obesity classification based on machine
learning, as shown in Figure 1. The main stages include
data collection and pre-processing, feature exploration
and transformation, data partitioning and normalization,
model development and optimization, performance
evaluation using various metrics, and interpretation of
results through the Explainable Artificial Intelligence
(XAI) approach.
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Fig. 1. Methodology Pipeline

3.1. Data Collection

Table 1 shows the features of the dataset used. This study
began with data collection using a structured obesity
dataset that comprehensively represents individual
characteristics. The dataset includes demographic
information, anthropometric attributes, and behavioral
and lifestyle factors, such as age, height and weight,
dietary patterns, physical activity levels, hydration habits,
and daily modes of transportation. The target variable
used was NObeyesdad, which classified weight status into
seven categories, ranging from Insufficient Weight to
Obesity Type III. This stage aimed to ensure the
availability of relevant, representative, and adequate data

to support the problem of multi-class obesity
classification.
TABLE 1. Feature Dataset
No Feature Description
1 Gender Individual’s gender
2 Age Individual’s age
3 Height Individual’s height
4 Weight Individual’s weight
5 Family_history_wit Has a family member suffered or

h_overweight suffers from overweight?

6 FAVC Do you eat high caloric food
frequently?

7 FCVC Do you usually eat vegetables in
your meals?

8 NCP How many main meals do you
have daily?

Do you eat any food between

9 CAEC meals?

10 SMOKE Do you smoke?

11 CH20
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How much water do you drink

12 scc daily?
Do you monitor the calories you
13 FAF eat daily?
How often do you have physical
14 TUE activity?
How much time do you use
technological devices such as cell
phone, videogames, television,
15 CALC computer and others?
16 MTRANS How often do you drink alcohol?
Which transportation do you
17 NObeyesdad usually use?

Obesity level

3.2. Data Pre-Processing

The pre-processing stage is carried out to improve data
quality and consistency prior to the modeling process.
Initial analysis includes identifying the dataset structure,
attribute types, and evaluating the existence of missing
values and data duplication. The results of the
examination showed that there were no missing values,
but a number of duplicate entries were found and
subsequently deleted to avoid distortion of the data
distribution and potential bias in the model training
process. In addition, descriptive statistics were
used to obtain an initial overview of the distribution and
characteristics of numerical features.

3.3. Exploratory Data Analysis

Exploratory Data Analysis was conducted to understand
the distribution patterns of the data and the relationships
between variables. Analysis of the target variable
distribution shows that the proportion of obesity classes
is relatively balanced, which is an important condition in
multi-class classification. Numerical features are analyzed
through distribution visualization and correlation
matrices to identify potential linear relationships, while
categorical features are analyzed based on the proportion
of each category. This stage provides initial insights into
the relationship between lifestyle factors and obesity
status.

Target Class Distribution

Obesity Category

Fig. 2. Target Class Distribution
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Figure 2 shows the distribution of the NObeyesdad target
class, where all obesity categories have a relatively
balanced number of samples, so the dataset is considered
adequate for the task of multi-class obesity classification
without any indication of significant class imbalance.
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Fig. 3. Distribution of key numerical features

Height Distribution Weight Distribution

Frequency

Figure 3 shows the distribution of key numerical features,
namely age, height, and weight, which indicate a
reasonable spread of data and adequately represent
individual variations for obesity classification analysis.
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Fig. 4. Correlation Matrix

Figure 4 shows that most numerical features have low to
moderate correlations, with the most notable relationship
being between height and weight, indicating no strong
multicollinearity and supporting the use of nonlinear
machine learning models.

3.4. Feature Selection

At this stage, independent variables are separated from
target variables to form a feature matrix (X) and labels (y).
Feature selection is performed by retaining all clinically
and statistically relevant attributes. This approach aims to
ensure that important information contributing to obesity
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classification is not prematurely eliminated. All
categorical features are converted into numerical
representations using label encoding techniques to be
compatible with Machine Learning algorithms. Target
variables are also encoded to support multi-class
classification schemes.

3.5. Data Transformation

Data transformation was performed by evaluating the
presence of outliers using the Interquartile Range (IQR)
method. Although a number of extreme values were
identified, the data was not aggressively deleted because,
in the context of obesity, extreme values can reflect real
and relevant physiological conditions. Therefore, the
original data distribution was retained to maintain the
clinical validity and representativeness of the dataset.

3.6. Split Data

The dataset was divided into training and testing sets
using a stratified split approach. This technique was
applied to ensure that the proportion of each obesity class
remained consistent in both subsets. Thus, model
performance evaluation could be carried out more
objectively and the results could be better generalized.

3.7. Scaling

Numeric feature normalization is performed using
StandardScaler, so that each feature has a mean of zero
and a standard deviation of one. This step is particularly
important for algorithms that are sensitive to data scale,
such as Support Vector Machine and K-Nearest Neighbors,
and contributes to accelerating the convergence process
during model training.

3.8. Modelling

The modeling stage is the core of this study, in which ten
Machine Learning algorithms are applied and compared
systematically, including Logistic Regression, Decision
Tree, Random Forest, Gradient Boosting, Support Vector
Machine, K-Nearest Neighbors, Naive Bayes, AdaBoost,
Extra Trees, and XGBoost as shown in Figure 5. Each
model was configured with initial parameters designed to
minimize the risk of overfitting. Evaluation was
performed using various performance metrics, including
accuracy, precision, recall, F1-score, and cross-validation,
to assess the stability and generalization ability of the
model.
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Fig. 5. Stacking Ensemble Architecture

3.9. Optimization

To improve model performance and robustness,
hyperparameter optimization was performed using the
Grid Search method. This process enabled systematic
exploration of the best parameter combinations for each
algorithm. The evaluation results showed that several
models experienced increased accuracy and a decrease in
overfitting gap, confirming the importance of the tuning
process in the development of Machine Learning-based
classification systems.

3.10. Explainable Artificial Intelligence (XAI)

In an effort to improve transparency and trust in the
model, the Explainable Artificial Intelligence (XAI)
approach was applied to the best model. The analysis was
conducted using the SHAP (SHapley Additive
exPlanations) method to identify the contribution of each
feature to the model's predictions. This approach allows
for a more in-depth interpretation of the dominant factors
that influence obesity status classification, so that the
model results are not only predictive but also scientifically
explainable and relevant in the context of health decision-
making.

4. RESULTS AND DISCUSSIONS

This section presents the results of obesity classification
experiments. A comparative evaluation across multiple
machine learning models is first reported to justify model
selection, followed by an in-depth analysis of the
optimized Logistic Regression model in a multi-class
classification scheme. The evaluation focuses on three
main aspects, namely prediction performance and
classification error patterns, model generalization ability
based on learning curve analysis, and model
interpretability through feature contribution analysis. All
results are presented to compare model performance
before and after hyperparameter optimization.
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4.1. Comparative Performance of Machine Learning
Models

Before discussing the classification results in depth, a
performance comparison was conducted against several
commonly used Machine Learning algorithms, including
Decision Tree, Random Forest, Gradient Boosting, and
Support Vector Machine, both before and after the
optimization process. Table 2 shows that some ensemble-
based models were able to achieve very high training
accuracy after optimization. However, this improvement
was often accompanied by a relatively large overfitting
gap, which indicates a decrease in generalization ability on
the test data. In contrast, Logistic Regression showed
consistent performance improvement between training
and testing data, with a relatively small and stable
accuracy gap. After optimization, this model achieves
competitive testing accuracy compared to other models,
accompanied by a controlled overfitting gap. These
findings indicate that Logistic Regression has a better
balance  between predictive performance and
generalization ability. Furthermore, compared to more
complex models, Logistic Regression offers a higher level
of interpretability and more stable learning behavior, as
will be discussed further through learning curve and SHAP
analysis. Based on these considerations, Logistic
Regression was selected as the final model in this study, as
it provides the most optimal compromise between
accuracy, stability, and transparency in the context of
obesity classification based on health data.

TABLE 2. Model Comparison Results
Train_ Test_ Overfit

Model Acc Acc Gap ~ Improvement
Logistic Regression 0.89 0.89 0.005
(Before)

0.052

Logistic Regression 0.95 0.94 0.016

(After)

Decision Tree (Before) 0.82 0.81 0.006

0.105
Decision Tree (After) 0.93 0.92 0.11
Random Forest (Before)  0.93 0.89 0.036
0

Random Forest (After) 0.93 0.89 0.034

Gradient Boosting 0.93 0.89 0.038
[Before) 0.045

Gradient Boosting (After)  0.99 0.94 0.052

SVM (Before) 0.94 0.88 0.065
0.040

SVM (After) 0.96 0.92 0.39
KNN (Before) 1.00 0.80 0.19
0.052
KNN (After) 1.00 0.85 0.14
Naive Bayes (Before) 0.59 0.59 -0.0061
0
Naive Bayes (After) 0.59 0.59  0.0055
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Train_. Test_ Overfit

Model Ace Acc Gap ~ Improvement
AdaBoost (Before) 0.41 0.42 -0.0094
0.0359
AdaBoost (After) 0.45 0.46  0.0076
Extra Trees (Before) 0.85 0.82  0.0338
-0.0096
Extra Trees (After) 0.84 0.81 0.0356
XGBoost (Before) 0.91 0.89  0.0226 0.0622
XGBoost (After) 0.98 0.95 0.0341

4.2. Model Performance and Confusion Matrix
Analysis

Figure 6 shows that the Logistic Regression model before
optimization achieved a testing accuracy of 0.8900. The
confusion matrix shows that most obesity classes can be
classified well, especially in the Obesity Type I, Obesity
Type 11, and Obesity Type III categories, which show low
classification error rates. However, relatively high
misclassification was still found in classes with clinically
similar characteristics, especially between Normal
Weight, Overweight Level [, and Overweight Level II. This
pattern indicates the limitations of linear models in
separating classes with overlapping feature distributions.

1. Logistic Regression
Before Optimization
Test Acc: 0.8900
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Normal_Weight - 8 “ 0 0 0 6 2

Obesity_Type_|l - 0 [} 2
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Overweighi
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Predicted Label

Fig. 6. Logistic Regression Before Optimization

After hyperparameter optimization, as shown in Figure 7.
The model's performance improved significantly with a
testing accuracy of 0.9426. The post-optimization
confusion matrix showed an increase in the number of
correct predictions in almost all classes, especially in the
Normal Weight and Overweight Level Il classes, which
previously had higher error rates. The decrease in
misclassification between adjacent classes indicates that
the optimization successfully improved the model's
discriminatory ability without causing overfitting. These
results confirm that the right parameter configuration
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plays a crucial role in improving the performance of
Logistic Regression in multi-class obesity classification
problems.

1. Logistic Regression
After Optimization
Test Acc: 0.9426
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Fig. 7. Logistic Regression After Optimization

4.3. Learning Curve Analysis and Generalization
Ability

Learning curve analysis was performed to evaluate the
learning behavior of the model and its generalization
ability to unseen data. Before optimization, as shown in
Figure 8. The curve showed that the training score
increased gradually and stabilized at a value close to 0.89
as the training data size increased. The cross-validation
score on small data sizes was still relatively low but
increased consistently as more data was added. The gap
between the training and cross-validation curves was
relatively small, with a generalization gap value of 0.0205,
indicating that the model did not experience significant
overfitting, but still had moderate bias.
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Fig. 8. Learning Curve of Logistic Regression before optimization

After optimization, Figure 9 shows a consistent
improvement in both curves. The training score increases
to exceed 0.95, while the cross-validation score reaches a
value close to 0.94 on a larger training data size. The
convergence between the two curves becomes more
stable, with a generalization gap of 0.0214. The very small
change in the gap (A = -0.0009) indicates that the
improvement in model performance is not accompanied
by an increase in variance, but rather comes from a more
optimal parameter configuration.

Logistic Regression
AFTER | Gap: 0.0214 | A: -0.0009

0.95 .\\\\"‘—’.——__.____.___-o—-—-.—-‘—O-———o————o
0.90 4

0.85 -

0.80

0.75 1

0.70 4

0.65 - : Sl

200 400 600 800 1000 1200

Training Size
Fig. 9. Learning Curve of Logistic Regression after optimization

In addition, the reduction in fluctuations in the cross-
validation curve after optimization indicates an increase
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in model stability against training data variation. This
confirms that the optimized Logistic Regression model is
able to utilize additional data more efficiently and has a
better bias-variance balance. Thus, the learning curve
analysis confirms that the increase in accuracy obtained is
robust and generalizable.

4.4. Model Interpretability Based on SHAP Analysis

To improve transparency and confidence in the
classification results, model interpretability analysis was
performed using the SHAP approach. The SHAP summary
in the result plot of Figure 10 show that the Weight feature
has the most dominant contribution to the classification
decision, followed by Height and Gender. The dominance
of these anthropometric features is consistent with the
conventional clinical approach that places weight and

height as the main indicators in assessing obesity status.
EXPLAINABLE Al (XAl) WITH SHAP - 1. Logistic Regression

weign:
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reve [l
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mTrans flif
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'] 20 40 60 80 100
mean(|SHAP value|) (average impact on model output magnitud

Fig. 10. Explainable Al

In addition, behavioral features such as FCVC (frequency
of vegetable consumption), FAF (physical activity), and
CH20 (water consumption) also contributed to the
model's predictions, albeit to a lesser extent. The
distribution of SHAP values shows that feature
contributions vary between classes, indicating that the
model does not rely on a single variable but combines
various factors to distinguish different levels of obesity.
These findings show that Logistic Regression not only
produces accurate predictions but also maintains a high
level of interpretability. This is an important advantage in
the context of health applications, where understanding
the basis of the model's decision-making is a crucial
aspect.
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4.5. Discussions

Previous studies on obesity classification have
predominantly relied on Body Mass Index (BMI) as the
primary indicator, as highlighted in works by Ferrulli,
Bonsu, and others. While this approach offers simplicity
and ease of implementation, it remains inherently static
and insufficient to reflect the multifaceted nature of
obesity, particularly with respect to behavioral and
lifestyle influences. Furthermore, findings reported by
Yackobovitch-Gavan reveal notable discrepancies
between World Health Organization (WHO) and Centers
for Disease Control and Prevention (CDC) classifications,
underscoring potential inconsistencies and biases
associated with single-threshold BMI-based
categorization.

In contrast to these conventional methods, the present
study proposes a multi-class machine learning framework
that simultaneously incorporates anthropometric and
lifestyle-related features. This integrated approach
enables a more nuanced representation of obesity status
by capturing interactions among multiple determinants.
Experimental evaluations demonstrate that, following
model optimization, the proposed framework achieves
consistently  high classification accuracy  while
significantly reducing misclassification among clinically
adjacent categories, such as Normal Weight and
Overweight, which are often problematic in traditional
BMI-based schemes.

An important contribution of this study lies in the
evaluation of model learning behavior and generalization
performance. The learning curve analysis indicates that
the optimized Logistic Regression model exhibits not only
improved predictive accuracy but also stable
generalization across training and validation data. The
relatively small generalization gap observed before and
after optimization suggests that the performance gains are
robust and not driven by overfitting or dataset-specific
characteristics. This aspect distinguishes the present
work from earlier studies, which typically focus on final
accuracy metrics without examining learning dynamics or
generalization risk.

Despite  employing a  machine learning-based
methodology, the proposed model retains interpretability
through SHAP-based analysis. The prominence of weight
and height as dominant features is consistent with
established clinical literature, reaffirming the relevance of
anthropometric indicators in obesity assessment. At the
same time, the observed contributions of lifestyle
factors—such as physical activity levels and dietary
patterns—highlight the model's ability to capture
dimensions of obesity that are frequently overlooked in
traditional approaches. Consequently, this study bridges
the gap between classical clinical frameworks and modern
data-driven techniques, offering an interpretable and
empirically grounded solution that has the potential to
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support more comprehensive and evidence-based

decision support systems.

TABLE 3. Study Comparison

Aspect Previous Research This Study

Classification BMI and BMI z-score Multivariate

basis (WHO, €DC) [16] (anthropometric +
lifestyle)
Types of Clinical, epidemiological, Data-based machine
approaches descriptive [15] learning
Class Generally binary or limited ~ Multi-class (7 levels
granularity [14] of obesity)
Adaptability to Static (fixed cut-off) [15] Adaptive through
data model learning

Generalization Not analyzed [14] Learning curve &

evaluation Ccv
Interpretability  Based on clinical rules [16] SHAP (feature
attribution)

Table 3 confirms that this study differs significantly from
previous studies in that it applies a data-based machine
learning approach and multivariate variables, thereby
producing a more detailed and adaptive multi-class obesity
classification.

5. CONCLUSIONS

This study aims to develop and evaluate a Machine
Learning-based obesity classification approach that can
overcome the limitations of conventional approaches
based on body mass index (BMI), which are static,
descriptive, and less adaptive to the complexity of lifestyle
factors. Based on the results of experiments and analyses
conducted, the study objective was effectively achieved
through the application of an optimized Logistic
Regression model in a multi-class obesity classification
scheme.

The evaluation results showed that hyperparameter
optimization significantly improved model performance,
as reflected in increased classification accuracy and a
decrease in the misclassification rate between obesity
classes with clinically similar characteristics. Confusion
matrix analysis confirms that the model is able to
distinguish seven levels of weight status more
consistently than a single threshold-based approach. In
addition, learning curve analysis shows that this
performance improvement is stable and generalizable,
with a relatively small generalization gap both before and
after optimization. These findings indicate that the model
is not only accurate but also has a good bias-variance
balance.

The main contribution of this study lies in providing an
adaptive and transparent data-driven  obesity
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classification framework. Unlike previous studies that
focused on BMI indicators alone, this study
simultaneously integrates anthropometric and lifestyle
behavior features. Interpretability analysis using SHAP
shows that although weight and height features remain
dominant factors, lifestyle variables such as physical
activity and consumption patterns also contribute to
classification decisions. This reinforces the clinical
relevance of the model while increasing confidence in the
prediction results.

Although various Machine Learning algorithms have been
evaluated in this study, including tree-based models and
ensemble methods, Logistic Regression was chosen as the
main model because it showed the most optimal balance
between predictive performance, generalization ability,
and interpretability. The evaluation results show that this
model achieved competitive accuracy after
hyperparameter optimization, with a relatively small and
stable generalization gap based on learning curve
analysis. These findings indicate that Logistic Regression
is able to utilize data information efficiently without
showing a tendency to overfit, a characteristic that is not
always consistent in more complex models.

In addition, the main advantage of Logistic Regression lies
in the level of transparency and ease of model
interpretation. Integration with SHAP analysis allows for
clear and consistent explanations of each feature's
contribution to the classification decision, which is
particularly important in the context of healthcare
applications. Compared to other models that are more
complex and tend to behave as black boxes, Logistic
Regression provides a better balance between accuracy
and clarity of decision-making. Therefore, the selection of
Logistic Regression in this study is not solely based on
numerical performance, but also on considerations of
stability, reliability, and practical relevance to support a
reliable obesity classification system oriented towards
real-world application.

Overall, this study shows that a multivariate Machine
Learning approach can serve as a more adaptive and
consistent alternative to conventional obesity
classification frameworks. By combining high predictive
performance, stable generalization capabilities, and
adequate interpretability, the proposed model has the
potential to support the development of artificial
intelligence-based decision support systems in the field of
health. These findings are expected to serve as a
foundation for further study exploring more complex
models, more diverse datasets, and direct application in
clinical contexts and data-driven health policy.
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