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Abstract. Automated identification of plant diseases is crucial for advancing precision agriculture and enabling farmers
to make informed, timely decisions. This study presents a deep learning-based framework for multi-class classification
of tomato leaf diseases using transfer learning with the VGG-19 architecture. A dataset comprising 10,000 images across
ten classes, including nine disease categories and one healthy class, was preprocessed and augmented to improve model
robustness and generalization. The training strategy employed a two-stage approach: initial feature extraction with
frozen, pre-trained layers, followed by selective fine-tuning to adapt the convolutional features to the target domain.
Comprehensive evaluation using accuracy, precision, recall, F1-score, and confusion matrices demonstrated the model’s
high discriminative capability, achieving an overall accuracy of 93% on the validation set. The results further revealed
strong performance in identifying most disease categories, while highlighting classification challenges between visually
similar classes, such as Tomato Mosaic Virus and Tomato Target Spot. The contributions of this research include the
development of an optimized training pipeline, a reproducible evaluation framework, and insights into the role of transfer
learning for agricultural image classification. The findings highlight the potential of deep learning to support automated
tomato disease monitoring, with implications for improving crop health management and enhancing agricultural
productivity.
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1. INTRODUCTION

Tomato production plays a crucial role in global agriculture,
yet it remains highly vulnerable to a variety of diseases that
severely reduce yield and quality [1]. Early and accurate
diagnosis of tomato leaf diseases is essential for effective
disease management; however, manual identification by
farmers or agricultural experts is often subjective, time-
consuming, and prone to human error [2], [3]. This
challenge is further compounded by the visual similarity of
symptoms across different disease categories, making
traditional approaches inadequate for large-scale and

challenges underscore the need for robust, interpretable,
and computationally efficient models that can consistently
perform across multiple disease categories [9].

The primary objective of this research is to develop an
automated tomato leaf disease classification system that
leverages transfer learning with the VGG-19 deep learning
architecture. The study aims to develop a framework that
can effectively learn discriminative features, minimize
overfitting, and maintain high classification performance
across all disease categories. By incorporating systematic
preprocessing, staged training strategies, and advanced

reliable detection [4].

The primary challenge in automated tomato leaf disease
classification lies in the complexity of multi-class
recognition [5], [6]. Different diseases often exhibit
overlapping features, such as blight and viral infections,
which complicates the task of distinguishing them with high
precision [7]. Moreover, deep learning models are prone to
overfitting when applied to relatively small agricultural
datasets, and ensuring generalizability across diverse
conditions remains a persistent concern [8]. These
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regularization techniques, this research seeks to enhance
both the accuracy and robustness of the model.

The contributions of this study are threefold. First, it
provides a structured methodology for adapting a pre-
trained convolutional neural network (CNN) to the domain
of tomato leaf disease classification, including optimized
preprocessing and augmentation techniques. Second, it
demonstrates the effectiveness of a two-stage training
strategy—feature extraction followed by fine-tuning—to
achieve balanced performance across multiple classes.
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Finally, the study delivers a comprehensive evaluation,
including accuracy, per-class classification metrics, and
confusion matrix analysis, offering both quantitative
performance measures and insights into areas of
misclassification. Collectively, these contributions establish
a reliable and reproducible framework that advances the
application of deep learning for agricultural disease
monitoring.

2. RELATED WORK

Research on tomato leaf disease classification has grown
rapidly, leveraging Convolutional Neural Networks
(CNNs), Transfer Learning, and, more recently,
Transformer-based architectures. Attallah [10] proposed
a compact CNN pipeline that utilizes transfer learning and
hybrid feature selection, while Pandiyaraju et al. [11]
introduced an adaptive ensemble framework that
combines exponential moving average fusion and
weighted gradient optimization.

Several works emphasize efficiency. Ahmed et al. [12]
explored lightweight architectures, such as MobileNetV2
with runtime augmentation, whereas Li et al. [13]
developed GD-Attention, a global pixel distribution
attention mechanism that enhances sensitivity to infected
regions. Liu et al. [14] proposed a multi-task distillation
learning (MTDL) framework integrating disease
classification and severity estimation within a single
model.

Custom CNN architectures have also been designed.
Ledbin  Vini and  Rathika [15] introduced
TrioConvTomatoNet, a model tailored for recognizing
tomato leaf disease. Zou et al. [16] integrated CNN and
Visual Transformers in ECVNet, capturing both local and
global features. In contrast, Zhou and Cai [17] proposed
DIMPCNET, which combines Dense Inception modules
with PCBAM to address complex background interference.
Transformer-based approaches are gaining momentum.
Hossain et al. [18] highlighted the effectiveness of Vision
Transformers for plant disease detection. Ouamane et al.
[19] presented HOWSVD-TEDA, a method integrating pre-
trained CNNs with tensor subspace learning. Similarly,
Mazumder et al. [20] introduced LeafDoc-Net, a
lightweight framework based on DenseNet121 and
MobileNetV2, enhanced with Grad-CAM++ for
interpretability.

Explainability has also received attention. Natarajan et al.
[21] employed explainable CNNs for transparent plant
disease diagnosis. Li et al. [22] introduced PDC-VLD, an
open-vocabulary detection framework for identifying
novel plant diseases. Nagasubramanian et al. [23]
combined hyperspectral imaging with 3D CNNs for deeper
physiological insights—Liu et al. [24] designed
NanoSegmenter, a lightweight Transformer-based
segmentation model for agricultural applications.
Interpretability methods continue to evolve. Dai et al. [25]
developed DFN-PSAN with SHAP and t-SNE for feature
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visualization, while Zeng et al. [26] proposed DIC-
Transformer, which generates image captions alongside
classification for explainable diagnosis. Alzahrani et al.
[27] provided a comparative analysis of CNN, DenseNet,
ResNet, and Vision Transformers, emphasizing the role of
transfer learning in agricultural disease detection.

3. METHODS

This section outlines the research methodology employed
for developing an automated tomato leaf disease
classification system using deep learning. The methodology
encompasses dataset acquisition and preprocessing, model
construction based on a pre-trained VGG-19 architecture
with transfer learning, staged training that includes feature
extraction and fine-tuning, and comprehensive evaluation
using accuracy, classification metrics, and confusion
matrices. The proposed framework is designed to ensure
robust feature learning, minimize overfitting, and provide
interpretable results for multi-class classification, as shown
in Figure 1.
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Fig. 1. Research Methodology

3.1. Dataset and Data Preparation

This study utilizes a tomato leaf image dataset comprising
ten distinct classes, including nine disease categories and
one healthy class, with a total of 10,000 images. Of these,
8,000 were used for training and 2,000 for validation. The
raw dataset was provided as a compressed ZIP file, which
was uploaded and extracted in the working environment
using Python in Google Colab. All images were resized to
224 x 224 pixels to match the input requirements of the
VGG19 model. To enhance model generalization and
robustness, data preprocessing and augmentation were
performed using TensorFlow Keras ImageDataGenerator.
The augmentation procedures included random rotations
of up to 20 degrees, horizontal and vertical shifts of up to
20% of the image size, random zoom, shear
transformations, and horizontal flips. At the same time,
pixel values were normalized to the range [0, 1]. The
training and validation datasets were split into an 80:20
ratio, while the validation images were only rescaled to
maintain consistent evaluation standards.
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3.2. Model Architecture

The primary model employed in this study was the pre-
trained VGG19, leveraging transfer learning to benefit
from features learned on the ImageNet dataset. The
VGG19 base model, excluding the top layers, served as a
feature extractor, with all pre-trained weights initially
frozen to prevent modification during the feature
extraction process. On top of the base model, several
custom layers were added to adapt the network for
tomato leaf classification, including a
GlobalAveragePooling2D layer to reduce feature
dimensionality, a fully connected Dense layer with 512
neurons and ReLU activation combined with Dropout of
0.5, followed by another Dense layer of 256 neurons with
ReLU activation and Dropout of 0.3. The final output layer
consisted of 10 neurons, corresponding to the number of
classes, and utilized a softmax activation function to
generate multi-class probability predictions. Mixed
precision training was applied throughout to improve
computational efficiency and optimize GPU memory
usage.

3.3. Training Strategy

Model training was conducted in two sequential stages to
maximize performance while minimizing overfitting. In
the initial stage, only the custom layers were trained,
while all pre-trained base layers remained frozen. The
model was compiled using the Adam optimizer with a
learning rate of 0.0001 and categorical cross-entropy as
the loss function. Several callbacks were employed to
enhance the training process, including ModelCheckpoint
to save the model with the highest validation accuracy,
EarlyStopping to halt training if the validation loss did not
improve  for ten  consecutive epochs, and
ReduceLROnPlateau to reduce the learning rate when the
validation loss plateaued. This feature extraction phase
was conducted for a maximum of 50 epochs. After the
initial training, selective layers of the base model,
specifically those from the 15th layer onward, were
unfrozen to enable fine-tuning, allowing the model to
adjust the pre-trained features to the tomato leaf dataset.
The model was then recompiled with a reduced learning
rate, one-tenth of the original, to ensure stable gradient
updates. Fine-tuning continued for an additional 20
epochs, using the same callbacks to monitor performance
and prevent overfitting.

3.4. Model Evaluation

Model evaluation was conducted comprehensively using
multiple metrics. Overall accuracy and loss were assessed
on the validation set to quantify general performance.
Additionally, a classification report was generated,
including precision, recall, and F1-score for each class, to
evaluate per-class performance. A confusion matrix was
also produced to visualize misclassification patterns
among different classes. Training history, including
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accuracy and loss curves for both feature extraction and
fine-tuning stages, was plotted to provide a detailed
analysis of learning dynamics and model convergence
behavior. This methodology ensures that the model
leverages transfer learning effectively, addresses the
challenges of multi-class classification, mitigates
overfitting, and provides interpretable and transparent
evaluation metrics, resulting in a robust and reproducible
framework for tomato leaf disease classification.

4. RESULTS AND DISCUSSIONS

4.1. Results

The training of the VGG19-based functional model for
tomato leaf disease classification demonstrated a clear and
consistent improvement in both training and validation
performance across the initial 50 epochs, followed by a
targeted fine-tuning phase. The model architecture
consisted of a pre-trained VGG-19 feature extractor with a
Global Average Pooling layer, followed by fully connected
layers of 512 and 256 neurons with dropout regularization,
culminating in a 10-class softmax output layer. The total
number of parameters was 20,420,938, of which 396,554
were trainable, emphasizing the reliance on the pre-trained
backbone while adapting the classifier layers to the task-
specific dataset.

Fig. 2. Model Accuracy and Losses of VGG16

Figure 2 shows the process during model training on the
VGG16 architecture. During the initial training phase, the
model exhibited progressive learning with the training
accuracy increasing from 10.94% in the first epoch to
77.6% by epoch 44. Correspondingly, validation accuracy
improved from 28.8% to 79.35%, indicating effective
generalization despite the relatively high number of
parameters. Notably, significant performance gains
occurred in the early epochs, where the model rapidly
adapted from random initialization in the classifier layers,
reflected by a decrease in validation loss from 2.1579 to
0.6435. The application of dropout layers effectively
mitigated overfitting during this stage.

Subsequent fine-tuning with a reduced learning rate (1le-5)
yielded a marked increase in both training and validation
metrics. Within nine fine-tuning epochs, training accuracy
reached 94.88%, while validation accuracy peaked at
91.85%, with a validation loss of 0.2242. These results
demonstrate the efficacy of transferring and fine-tuning
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pre-trained convolutional features for high-dimensional
visual recognition tasks. Overall, the model demonstrated
strong convergence, robust generalization, and effective
utilization of deep feature representations for multi-class
classification of tomato leaf diseases.

TABLE 1. Classification performance of the proposed model on the
tomato leaf disease dataset

Class Precision Recall F1-Score Support
Tomato Bacterial Spot 0.94 0.99 0.97 200
Tomato Early Blight 0.96 0.82 0.89 200
Tomato Healthy 0.90 0.97 0.93 200
Tomato Late Blight 1.00 0.88 0.93 200
Tomato Leaf Mold 0.90 0.98 0.94 200
Tomato Septoria Leaf Spot 0.83 0.91 0.87 200
gl())g:?;g)Spider Mites (Two- 0.90 091 0.90 200
Tomato Target Spot 1.00 0.95 0.97 200
Tomato Mosaic Virus 1.00 0.88 0.94 200
‘T/;)rr:sto Yellow Leaf Curl 0.88 1.00 0.94 200
Accuracy - - 0.93 2000
Macro Average 0.93 0.93 0.93 2000
Weighted Average 0.93 0.93 0.93 2000

The evaluation of the classification model demonstrates
robust performance across all ten classes of tomato leaf
conditions, as shown in Table 1. Overall, the model achieved
an accuracy of 93%, indicating a high proportion of correct
predictions over the total validation set of 2,000 images.
The macro-averaged precision, recall, and F1-score were all
0.93, reflecting consistent performance across classes
without bias toward more frequent classes. Similarly, the
weighted averages matched the macro averages,
confirming that the model maintains balanced predictive
capability even when accounting for class support.
Examining the per-class metrics, the model exhibits robust
performance in identifying Tomato_Bacterial_spot,
Tomato_Target_Spot, and Tomato_Tomato_mosaic_virus,
achieving precision and F1-scores of up to 1.00 in some
cases, with recall values ranging from 0.88 to 0.99. A slightly
lower recall is observed for Tomato_Early_blight (0.82) and
Tomato_Late_blight  (0.88), suggesting  occasional
misclassification between these disease patterns, likely due
to visual similarities in symptom manifestation. Classes
such as Tomato_Septoria_leaf_spot and
Tomato_Spider_mites_Two-spotted_spider_mite  exhibit
moderate precision, ranging from 0.83 to 0.90, highlighting
minor challenges in distinguishing these conditions.
Overall, the model demonstrates highly reliable
discriminative capability for multi-class tomato leaf disease
classification, with a balanced trade-off between precision
and recall. The results suggest that the trained model is
suitable for practical deployment in automated disease
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monitoring systems, providing accurate and consistent
diagnostic predictions across diverse disease categories.

Confusion Matrix
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Fig. 3. The Confusion matrix provides a comprehensive quantitative
evaluation of the classification model’s performance

The confusion matrix provides a comprehensive
quantitative evaluation of the classification model's
performance on the tomato leaf disease dataset, as shown
in Figure 3. Overall, the model demonstrates strong
classification capability, as reflected by the high values
along the main diagonal, which represent correctly
classified instances (True Positives). This indicates that the
proposed framework effectively captures discriminative
features of most disease categories.

In terms of specific outcomes, the model achieved near-
perfect classification for several classes. For example,
Tomato_Bacterial_spot recorded 188 True Positives, while
Tomato_Early_blight and Tomato_Healthy obtained 165
and 134 True Positives, respectively. Similarly, Tomato
Yellow Leaf Curl Virus achieved 260 correct classifications,
with minimal or no misclassifications. Other classes, such as

Tomato_Late_blight (115 True Positives),
Tomato_Leaf Mold (180 True Positives),
Tomato_Septoria_leaf _spot (162 True Positives),

Tomato_Spider_mites Two-spotted_spider_mite (181 True
Positives), and Tomato_Target_Spot (180 True Positives),
also exhibited high classification accuracy. These results
confirm the model’s ability to identify a wide range of
disease symptoms.

Despite these strong results, the confusion matrix also
highlights notable areas of difficulty. A recurring challenge
was observed in distinguishing Tomato mosaic virus from

other conditions. Specifically, 35 instances were
misclassified as Tomato_Target Spot and seven as
Tomato_Late_blight. Similarly, the
Tomato_Spider_mites_Two-spotted_spider_mite class
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exhibited 34 false negatives, often being misclassified as
Tomato_Tomato_mosaic_virus or other conditions. In
addition, there were 7 cases in which the model incorrectly
predicted Tomato_Spider_mites_Two-spotted_spider_mite
when the actual label was Tomato_Tomato_mosaic_virus.
Another source of misclassification occurred in the
Tomato_Early_blight class. Here, eight instances were
confused with Tomato Late Blight, five with Tomato
Healthy, and seven with Tomato Mosaic Virus. These off-
diagonal entries indicate areas where inter-class similarity
and overlapping visual features may have contributed to
reduced discriminative accuracy. The results suggest that
blight and viral diseases, in particular, present feature
ambiguities that pose challenges for the current model.

In conclusion, the confusion matrix confirms the model’s
robustness in multi-class tomato disease classification, with
high accuracy across most categories. At the same time, the
identified misclassification patterns underscore the need
for further refinement, such as advanced feature
engineering, the incorporation of attention mechanisms, or
the integration of domain-specific knowledge to improve
the separation between visually similar disease categories.

4.2. Discussions

The experimental results demonstrate that the proposed
model achieves strong and balanced performance across
multiple tomato leaf disease classes, with consistently high
precision, recall, and F1-scores. The classification report
and confusion matrix indicate the model’s robustness in
distinguishing visually similar disease categories such as
bacterial, viral, and fungal infections. Nonetheless, certain
misclassifications were observed, particularly between
Tomato mosaic virus and Target Spot, as well as between
Spider mites and viral conditions, which suggest the
presence of overlapping visual features that remain
challenging for automated recognition systems. These
findings highlight the importance of incorporating more
discriminative feature representations to enhance inter-
class separability.

When compared to prior research, the results align with
earlier works that established CNNs as effective
architectures for plant disease recognition [10], [11].
However, unlike traditional CNN-based methods, which
primarily emphasize classification accuracy, the present
study provides a more balanced analysis by examining both
the strengths and limitations through detailed evaluation
metrics. This contributes to a more comprehensive
understanding of the model’s practical reliability in real-
world scenarios. Moreover, while lightweight and efficient
models such as MobileNetV2 and GD-Attention [12], [13]
demonstrate scalability advantages, they often lack
interpretability mechanisms, which limit their applicability
in agricultural extension services where explainability is
essential for adoption.
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Recent advances using Transformer-based models [16],
[18], [19] emphasize global feature learning, while
explainable approaches such as DFN-PSAN [25] and DIC-
Transformer [26] focus on transparency. In this context, the
proposed framework complements existing literature by
offering both robust classification and the potential for
integration with explainable Al (XAI) tools, thereby
bridging the gap between accuracy-driven and
transparency-oriented approaches. This dual emphasis
enhances the usability of the model for practical
agricultural decision-making, particularly for farmers and
agronomists who require not only predictions but also a
clear understanding of the reasoning behind those
predictions.

Taken together, the results suggest that while significant
progress has been made in developing deep learning
models for tomato disease classification, further efforts are
needed to address the persistent challenge of
misclassification among visually similar classes and to
enhance model interpretability. Future research directions
include the integration of hybrid CNN-Transformer
architectures, the incorporation of domain-specific
knowledge into feature learning, and the adoption of
advanced XAI methods such as SHAP or Grad-CAM to
provide interpretable visual explanations. Such
advancements would strengthen both the scientific
contribution of plant disease recognition models and their
real-world applicability in supporting sustainable
agriculture.

5. CONCLUSIONS

This study aimed to address the critical challenge of
automated tomato leaf disease classification by leveraging
transfer learning with the VGG-19 architecture. The
primary objective was to design a robust framework
capable of distinguishing ten tomato leaf conditions with
high accuracy, while minimizing overfitting and ensuring
generalizability. Through systematic preprocessing,
targeted data augmentation, and a two-stage training
strategy involving feature extraction followed by fine-
tuning, the proposed model successfully met these
objectives.

The key findings demonstrate that the VGG19-based model
achieved a high overall classification accuracy of 93%, with
balanced precision, recall, and F1-scores across all classes.
The results indicate the model's strong capability to
discriminate between multiple tomato leaf diseases,
including bacterial, fungal, and viral infections, as well as
healthy leaves. Moreover, the evaluation through the
confusion matrix highlighted areas of classification
ambiguity, particularly between visually similar classes
such as Tomato Mosaic Virus and Tomato Target Spot.
These misclassifications underline the inherent complexity
of distinguishing diseases with overlapping visual
symptoms, suggesting opportunities for further refinement
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through advanced feature extraction or attention-based
mechanisms.

The contributions of this research are threefold. First, it
demonstrates the effectiveness of adapting a pre-trained
deep learning model through transfer learning for the
detection of agricultural diseases. Second, it provides an
optimized training pipeline, including data augmentation
and staged fine-tuning, that enhances performance while
mitigating overfitting. Third, it delivers a comprehensive
evaluation framework that not only quantifies classification
performance but also provides interpretable insights into
areas of model weakness.

In conclusion, the proposed model establishes a reliable
and reproducible framework for classifying tomato leaf
diseases, contributing to the broader application of deep
learning in precision agriculture. While the findings confirm
the robustness of the approach, future research should
explore the integration of domain-specific features,
attention mechanisms, or ensemble strategies further to
improve the separation of visually similar disease
categories. Such advancements hold the potential to
enhance the practical deployment of automated disease
monitoring systems, ultimately supporting farmers in
timely and accurate decision-making to improve crop
health and productivity.
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