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Abstract. Automated identification of plant diseases is crucial for advancing precision agriculture and enabling farmers 
to make informed, timely decisions. This study presents a deep learning-based framework for multi-class classification 
of tomato leaf diseases using transfer learning with the VGG-19 architecture. A dataset comprising 10,000 images across 
ten classes, including nine disease categories and one healthy class, was preprocessed and augmented to improve model 
robustness and generalization. The training strategy employed a two-stage approach: initial feature extraction with 
frozen, pre-trained layers, followed by selective fine-tuning to adapt the convolutional features to the target domain. 
Comprehensive evaluation using accuracy, precision, recall, F1-score, and confusion matrices demonstrated the model’s 
high discriminative capability, achieving an overall accuracy of 93% on the validation set. The results further revealed 
strong performance in identifying most disease categories, while highlighting classification challenges between visually 
similar classes, such as Tomato Mosaic Virus and Tomato Target Spot. The contributions of this research include the 
development of an optimized training pipeline, a reproducible evaluation framework, and insights into the role of transfer 
learning for agricultural image classification. The findings highlight the potential of deep learning to support automated 
tomato disease monitoring, with implications for improving crop health management and enhancing agricultural 
productivity. 
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1. INTRODUCTION 

Tomato production plays a crucial role in global agriculture, 
yet it remains highly vulnerable to a variety of diseases that 
severely reduce yield and quality [1]. Early and accurate 
diagnosis of tomato leaf diseases is essential for effective 
disease management; however, manual identification by 
farmers or agricultural experts is often subjective, time-
consuming, and prone to human error [2], [3]. This 
challenge is further compounded by the visual similarity of 
symptoms across different disease categories, making 
traditional approaches inadequate for large-scale and 
reliable detection [4]. 
The primary challenge in automated tomato leaf disease 
classification lies in the complexity of multi-class 
recognition [5], [6]. Different diseases often exhibit 
overlapping features, such as blight and viral infections, 
which complicates the task of distinguishing them with high 
precision [7]. Moreover, deep learning models are prone to 
overfitting when applied to relatively small agricultural 
datasets, and ensuring generalizability across diverse 
conditions remains a persistent concern [8]. These 

challenges underscore the need for robust, interpretable, 
and computationally efficient models that can consistently 
perform across multiple disease categories [9]. 
The primary objective of this research is to develop an 
automated tomato leaf disease classification system that 
leverages transfer learning with the VGG-19 deep learning 
architecture. The study aims to develop a framework that 
can effectively learn discriminative features, minimize 
overfitting, and maintain high classification performance 
across all disease categories. By incorporating systematic 
preprocessing, staged training strategies, and advanced 
regularization techniques, this research seeks to enhance 
both the accuracy and robustness of the model. 
The contributions of this study are threefold. First, it 
provides a structured methodology for adapting a pre-
trained convolutional neural network (CNN) to the domain 
of tomato leaf disease classification, including optimized 
preprocessing and augmentation techniques. Second, it 
demonstrates the effectiveness of a two-stage training 
strategy—feature extraction followed by fine-tuning—to 
achieve balanced performance across multiple classes. 
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Finally, the study delivers a comprehensive evaluation, 
including accuracy, per-class classification metrics, and 
confusion matrix analysis, offering both quantitative 
performance measures and insights into areas of 
misclassification. Collectively, these contributions establish 
a reliable and reproducible framework that advances the 
application of deep learning for agricultural disease 
monitoring. 

2. RELATED WORK 

Research on tomato leaf disease classification has grown 
rapidly, leveraging Convolutional Neural Networks 
(CNNs), Transfer Learning, and, more recently, 
Transformer-based architectures. Attallah [10] proposed 
a compact CNN pipeline that utilizes transfer learning and 
hybrid feature selection, while Pandiyaraju et al. [11] 
introduced an adaptive ensemble framework that 
combines exponential moving average fusion and 
weighted gradient optimization. 
Several works emphasize efficiency. Ahmed et al. [12] 
explored lightweight architectures, such as MobileNetV2 
with runtime augmentation, whereas Li et al. [13] 
developed GD-Attention, a global pixel distribution 
attention mechanism that enhances sensitivity to infected 
regions. Liu et al. [14] proposed a multi-task distillation 
learning (MTDL) framework integrating disease 
classification and severity estimation within a single 
model. 
Custom CNN architectures have also been designed. 
Ledbin Vini and Rathika [15] introduced 
TrioConvTomatoNet, a model tailored for recognizing 
tomato leaf disease. Zou et al. [16] integrated CNN and 
Visual Transformers in ECVNet, capturing both local and 
global features. In contrast, Zhou and Cai [17] proposed 
DIMPCNET, which combines Dense Inception modules 
with PCBAM to address complex background interference. 
Transformer-based approaches are gaining momentum. 
Hossain et al. [18] highlighted the effectiveness of Vision 
Transformers for plant disease detection. Ouamane et al. 
[19] presented HOWSVD-TEDA, a method integrating pre-
trained CNNs with tensor subspace learning. Similarly, 
Mazumder et al. [20] introduced LeafDoc-Net, a 
lightweight framework based on DenseNet121 and 
MobileNetV2, enhanced with Grad-CAM++ for 
interpretability. 
Explainability has also received attention. Natarajan et al. 
[21]  employed explainable CNNs for transparent plant 
disease diagnosis. Li et al. [22] introduced PDC-VLD, an 
open-vocabulary detection framework for identifying 
novel plant diseases. Nagasubramanian et al. [23] 
combined hyperspectral imaging with 3D CNNs for deeper 
physiological insights—Liu et al. [24] designed 
NanoSegmenter, a lightweight Transformer-based 
segmentation model for agricultural applications. 
Interpretability methods continue to evolve. Dai et al. [25] 
developed DFN-PSAN with SHAP and t-SNE for feature 

visualization, while Zeng et al. [26] proposed DIC-
Transformer, which generates image captions alongside 
classification for explainable diagnosis. Alzahrani et al. 
[27] provided a comparative analysis of CNN, DenseNet, 
ResNet, and Vision Transformers, emphasizing the role of 
transfer learning in agricultural disease detection. 

3. METHODS 

This section outlines the research methodology employed 
for developing an automated tomato leaf disease 
classification system using deep learning. The methodology 
encompasses dataset acquisition and preprocessing, model 
construction based on a pre-trained VGG-19 architecture 
with transfer learning, staged training that includes feature 
extraction and fine-tuning, and comprehensive evaluation 
using accuracy, classification metrics, and confusion 
matrices. The proposed framework is designed to ensure 
robust feature learning, minimize overfitting, and provide 
interpretable results for multi-class classification, as shown 
in Figure 1. 

 

Fig. 1. Research Methodology 

3.1. Dataset and Data Preparation  

This study utilizes a tomato leaf image dataset comprising 
ten distinct classes, including nine disease categories and 
one healthy class, with a total of 10,000 images. Of these, 
8,000 were used for training and 2,000 for validation. The 
raw dataset was provided as a compressed ZIP file, which 
was uploaded and extracted in the working environment 
using Python in Google Colab. All images were resized to 
224 × 224 pixels to match the input requirements of the 
VGG19 model. To enhance model generalization and 
robustness, data preprocessing and augmentation were 
performed using TensorFlow Keras ImageDataGenerator. 
The augmentation procedures included random rotations 
of up to 20 degrees, horizontal and vertical shifts of up to 
20% of the image size, random zoom, shear 
transformations, and horizontal flips. At the same time, 
pixel values were normalized to the range [0, 1]. The 
training and validation datasets were split into an 80:20 
ratio, while the validation images were only rescaled to 
maintain consistent evaluation standards. 
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3.2. Model Architecture 

The primary model employed in this study was the pre-
trained VGG19, leveraging transfer learning to benefit 
from features learned on the ImageNet dataset. The 
VGG19 base model, excluding the top layers, served as a 
feature extractor, with all pre-trained weights initially 
frozen to prevent modification during the feature 
extraction process. On top of the base model, several 
custom layers were added to adapt the network for 
tomato leaf classification, including a 
GlobalAveragePooling2D layer to reduce feature 
dimensionality, a fully connected Dense layer with 512 
neurons and ReLU activation combined with Dropout of 
0.5, followed by another Dense layer of 256 neurons with 
ReLU activation and Dropout of 0.3. The final output layer 
consisted of 10 neurons, corresponding to the number of 
classes, and utilized a softmax activation function to 
generate multi-class probability predictions. Mixed 
precision training was applied throughout to improve 
computational efficiency and optimize GPU memory 
usage. 

3.3. Training Strategy 

Model training was conducted in two sequential stages to 
maximize performance while minimizing overfitting. In 
the initial stage, only the custom layers were trained, 
while all pre-trained base layers remained frozen. The 
model was compiled using the Adam optimizer with a 
learning rate of 0.0001 and categorical cross-entropy as 
the loss function. Several callbacks were employed to 
enhance the training process, including ModelCheckpoint 
to save the model with the highest validation accuracy, 
EarlyStopping to halt training if the validation loss did not 
improve for ten consecutive epochs, and 
ReduceLROnPlateau to reduce the learning rate when the 
validation loss plateaued. This feature extraction phase 
was conducted for a maximum of 50 epochs. After the 
initial training, selective layers of the base model, 
specifically those from the 15th layer onward, were 
unfrozen to enable fine-tuning, allowing the model to 
adjust the pre-trained features to the tomato leaf dataset. 
The model was then recompiled with a reduced learning 
rate, one-tenth of the original, to ensure stable gradient 
updates. Fine-tuning continued for an additional 20 
epochs, using the same callbacks to monitor performance 
and prevent overfitting. 

3.4. Model Evaluation 

Model evaluation was conducted comprehensively using 
multiple metrics. Overall accuracy and loss were assessed 
on the validation set to quantify general performance. 
Additionally, a classification report was generated, 
including precision, recall, and F1-score for each class, to 
evaluate per-class performance. A confusion matrix was 
also produced to visualize misclassification patterns 
among different classes. Training history, including 

accuracy and loss curves for both feature extraction and 
fine-tuning stages, was plotted to provide a detailed 
analysis of learning dynamics and model convergence 
behavior. This methodology ensures that the model 
leverages transfer learning effectively, addresses the 
challenges of multi-class classification, mitigates 
overfitting, and provides interpretable and transparent 
evaluation metrics, resulting in a robust and reproducible 
framework for tomato leaf disease classification. 

4. RESULTS AND DISCUSSIONS 

4.1. Results 

The training of the VGG19-based functional model for 
tomato leaf disease classification demonstrated a clear and 
consistent improvement in both training and validation 
performance across the initial 50 epochs, followed by a 
targeted fine-tuning phase. The model architecture 
consisted of a pre-trained VGG-19 feature extractor with a 
Global Average Pooling layer, followed by fully connected 
layers of 512 and 256 neurons with dropout regularization, 
culminating in a 10-class softmax output layer. The total 
number of parameters was 20,420,938, of which 396,554 
were trainable, emphasizing the reliance on the pre-trained 
backbone while adapting the classifier layers to the task-
specific dataset. 
 

 

Fig. 2. Model Accuracy and Losses of VGG16 

 
Figure 2 shows the process during model training on the 
VGG16 architecture. During the initial training phase, the 
model exhibited progressive learning with the training 
accuracy increasing from 10.94% in the first epoch to 
77.6% by epoch 44. Correspondingly, validation accuracy 
improved from 28.8% to 79.35%, indicating effective 
generalization despite the relatively high number of 
parameters. Notably, significant performance gains 
occurred in the early epochs, where the model rapidly 
adapted from random initialization in the classifier layers, 
reflected by a decrease in validation loss from 2.1579 to 
0.6435. The application of dropout layers effectively 
mitigated overfitting during this stage. 
Subsequent fine-tuning with a reduced learning rate (1e-5) 
yielded a marked increase in both training and validation 
metrics. Within nine fine-tuning epochs, training accuracy 
reached 94.88%, while validation accuracy peaked at 
91.85%, with a validation loss of 0.2242. These results 
demonstrate the efficacy of transferring and fine-tuning 
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pre-trained convolutional features for high-dimensional 
visual recognition tasks. Overall, the model demonstrated 
strong convergence, robust generalization, and effective 
utilization of deep feature representations for multi-class 
classification of tomato leaf diseases. 

TABLE 1. Classification performance of the proposed model on the 
tomato leaf disease dataset 

Class Precision Recall F1-Score Support 

Tomato Bacterial Spot 0.94 0.99 0.97 200 

Tomato Early Blight 0.96 0.82 0.89 200 

Tomato Healthy 0.90 0.97 0.93 200 

Tomato Late Blight 1.00 0.88 0.93 200 

Tomato Leaf Mold 0.90 0.98 0.94 200 

Tomato Septoria Leaf Spot 0.83 0.91 0.87 200 

Tomato Spider Mites (Two-
Spotted) 

0.90 0.91 0.90 200 

Tomato Target Spot 1.00 0.95 0.97 200 

Tomato Mosaic Virus 1.00 0.88 0.94 200 

Tomato Yellow Leaf Curl 
Virus 

0.88 1.00 0.94 200 

Accuracy – – 0.93 2000 

Macro Average 0.93 0.93 0.93 2000 

Weighted Average 0.93 0.93 0.93 2000 

 
The evaluation of the classification model demonstrates 
robust performance across all ten classes of tomato leaf 
conditions, as shown in Table 1. Overall, the model achieved 
an accuracy of 93%, indicating a high proportion of correct 
predictions over the total validation set of 2,000 images. 
The macro-averaged precision, recall, and F1-score were all 
0.93, reflecting consistent performance across classes 
without bias toward more frequent classes. Similarly, the 
weighted averages matched the macro averages, 
confirming that the model maintains balanced predictive 
capability even when accounting for class support. 
Examining the per-class metrics, the model exhibits robust 
performance in identifying Tomato_Bacterial_spot, 
Tomato_Target_Spot, and Tomato_Tomato_mosaic_virus, 
achieving precision and F1-scores of up to 1.00 in some 
cases, with recall values ranging from 0.88 to 0.99. A slightly 
lower recall is observed for Tomato_Early_blight (0.82) and 
Tomato_Late_blight (0.88), suggesting occasional 
misclassification between these disease patterns, likely due 
to visual similarities in symptom manifestation. Classes 
such as Tomato_Septoria_leaf_spot and 
Tomato_Spider_mites_Two-spotted_spider_mite exhibit 
moderate precision, ranging from 0.83 to 0.90, highlighting 
minor challenges in distinguishing these conditions. 
Overall, the model demonstrates highly reliable 
discriminative capability for multi-class tomato leaf disease 
classification, with a balanced trade-off between precision 
and recall. The results suggest that the trained model is 
suitable for practical deployment in automated disease 

monitoring systems, providing accurate and consistent 
diagnostic predictions across diverse disease categories. 
 

 
Fig. 3. The Confusion matrix provides a comprehensive quantitative 

evaluation of the classification model’s performance 

 

The confusion matrix provides a comprehensive 
quantitative evaluation of the classification model’s 
performance on the tomato leaf disease dataset, as shown 
in Figure 3. Overall, the model demonstrates strong 
classification capability, as reflected by the high values 
along the main diagonal, which represent correctly 
classified instances (True Positives). This indicates that the 
proposed framework effectively captures discriminative 
features of most disease categories. 
In terms of specific outcomes, the model achieved near-
perfect classification for several classes. For example, 
Tomato_Bacterial_spot recorded 188 True Positives, while 
Tomato_Early_blight and Tomato_Healthy obtained 165 
and 134 True Positives, respectively. Similarly, Tomato 
Yellow Leaf Curl Virus achieved 260 correct classifications, 
with minimal or no misclassifications. Other classes, such as 
Tomato_Late_blight (115 True Positives), 
Tomato_Leaf_Mold (180 True Positives), 
Tomato_Septoria_leaf_spot (162 True Positives), 
Tomato_Spider_mites_Two-spotted_spider_mite (181 True 
Positives), and Tomato_Target_Spot (180 True Positives), 
also exhibited high classification accuracy. These results 
confirm the model’s ability to identify a wide range of 
disease symptoms. 
Despite these strong results, the confusion matrix also 
highlights notable areas of difficulty. A recurring challenge 
was observed in distinguishing Tomato mosaic virus from 
other conditions. Specifically, 35 instances were 
misclassified as Tomato_Target_Spot and seven as 
Tomato_Late_blight. Similarly, the 
Tomato_Spider_mites_Two-spotted_spider_mite class 
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exhibited 34 false negatives, often being misclassified as 
Tomato_Tomato_mosaic_virus or other conditions. In 
addition, there were 7 cases in which the model incorrectly 
predicted Tomato_Spider_mites_Two-spotted_spider_mite 
when the actual label was Tomato_Tomato_mosaic_virus. 
Another source of misclassification occurred in the 
Tomato_Early_blight class. Here, eight instances were 
confused with Tomato Late Blight, five with Tomato 
Healthy, and seven with Tomato Mosaic Virus. These off-
diagonal entries indicate areas where inter-class similarity 
and overlapping visual features may have contributed to 
reduced discriminative accuracy. The results suggest that 
blight and viral diseases, in particular, present feature 
ambiguities that pose challenges for the current model. 
In conclusion, the confusion matrix confirms the model’s 
robustness in multi-class tomato disease classification, with 
high accuracy across most categories. At the same time, the 
identified misclassification patterns underscore the need 
for further refinement, such as advanced feature 
engineering, the incorporation of attention mechanisms, or 
the integration of domain-specific knowledge to improve 
the separation between visually similar disease categories. 

4.2. Discussions 

The experimental results demonstrate that the proposed 
model achieves strong and balanced performance across 
multiple tomato leaf disease classes, with consistently high 
precision, recall, and F1-scores. The classification report 
and confusion matrix indicate the model’s robustness in 
distinguishing visually similar disease categories such as 
bacterial, viral, and fungal infections. Nonetheless, certain 
misclassifications were observed, particularly between 
Tomato mosaic virus and Target Spot, as well as between 
Spider mites and viral conditions, which suggest the 
presence of overlapping visual features that remain 
challenging for automated recognition systems. These 
findings highlight the importance of incorporating more 
discriminative feature representations to enhance inter-
class separability. 
When compared to prior research, the results align with 
earlier works that established CNNs as effective 
architectures for plant disease recognition [10], [11]. 
However, unlike traditional CNN-based methods, which 
primarily emphasize classification accuracy, the present 
study provides a more balanced analysis by examining both 
the strengths and limitations through detailed evaluation 
metrics. This contributes to a more comprehensive 
understanding of the model’s practical reliability in real-
world scenarios. Moreover, while lightweight and efficient 
models such as MobileNetV2 and GD-Attention  [12], [13] 
demonstrate scalability advantages, they often lack 
interpretability mechanisms, which limit their applicability 
in agricultural extension services where explainability is 
essential for adoption. 

Recent advances using Transformer-based models [16], 
[18], [19] emphasize global feature learning, while 
explainable approaches such as DFN-PSAN [25] and DIC-
Transformer [26] focus on transparency. In this context, the 
proposed framework complements existing literature by 
offering both robust classification and the potential for 
integration with explainable AI (XAI) tools, thereby 
bridging the gap between accuracy-driven and 
transparency-oriented approaches. This dual emphasis 
enhances the usability of the model for practical 
agricultural decision-making, particularly for farmers and 
agronomists who require not only predictions but also a 
clear understanding of the reasoning behind those 
predictions. 
Taken together, the results suggest that while significant 
progress has been made in developing deep learning 
models for tomato disease classification, further efforts are 
needed to address the persistent challenge of 
misclassification among visually similar classes and to 
enhance model interpretability. Future research directions 
include the integration of hybrid CNN-Transformer 
architectures, the incorporation of domain-specific 
knowledge into feature learning, and the adoption of 
advanced XAI methods such as SHAP or Grad-CAM to 
provide interpretable visual explanations. Such 
advancements would strengthen both the scientific 
contribution of plant disease recognition models and their 
real-world applicability in supporting sustainable 
agriculture. 

5. CONCLUSIONS 

This study aimed to address the critical challenge of 
automated tomato leaf disease classification by leveraging 
transfer learning with the VGG-19 architecture. The 
primary objective was to design a robust framework 
capable of distinguishing ten tomato leaf conditions with 
high accuracy, while minimizing overfitting and ensuring 
generalizability. Through systematic preprocessing, 
targeted data augmentation, and a two-stage training 
strategy involving feature extraction followed by fine-
tuning, the proposed model successfully met these 
objectives. 
The key findings demonstrate that the VGG19-based model 
achieved a high overall classification accuracy of 93%, with 
balanced precision, recall, and F1-scores across all classes. 
The results indicate the model’s strong capability to 
discriminate between multiple tomato leaf diseases, 
including bacterial, fungal, and viral infections, as well as 
healthy leaves. Moreover, the evaluation through the 
confusion matrix highlighted areas of classification 
ambiguity, particularly between visually similar classes 
such as Tomato Mosaic Virus and Tomato Target Spot. 
These misclassifications underline the inherent complexity 
of distinguishing diseases with overlapping visual 
symptoms, suggesting opportunities for further refinement 
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through advanced feature extraction or attention-based 
mechanisms. 
The contributions of this research are threefold. First, it 
demonstrates the effectiveness of adapting a pre-trained 
deep learning model through transfer learning for the 
detection of agricultural diseases. Second, it provides an 
optimized training pipeline, including data augmentation 
and staged fine-tuning, that enhances performance while 
mitigating overfitting. Third, it delivers a comprehensive 
evaluation framework that not only quantifies classification 
performance but also provides interpretable insights into 
areas of model weakness. 
In conclusion, the proposed model establishes a reliable 
and reproducible framework for classifying tomato leaf 
diseases, contributing to the broader application of deep 
learning in precision agriculture. While the findings confirm 
the robustness of the approach, future research should 
explore the integration of domain-specific features, 
attention mechanisms, or ensemble strategies further to 
improve the separation of visually similar disease 
categories. Such advancements hold the potential to 
enhance the practical deployment of automated disease 
monitoring systems, ultimately supporting farmers in 
timely and accurate decision-making to improve crop 
health and productivity. 
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