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Abstract. The increasing penetration of solar photovoltaic (PV) systems into modern power grids demands accurate, 
reliable short-term power forecasting to ensure operational stability and efficient energy management. However, solar 
power generation exhibits strong nonlinearity, non-stationarity, and pronounced temporal dependencies, driven by 
diurnal cycles and rapid environmental variations, which pose significant challenges for conventional forecasting 
approaches. This study aims to develop an efficient Long Short-Term Memory (LSTM)-based framework for short-term 
DC power prediction that effectively captures the temporal dynamics of solar power generation while maintaining low 
computational complexity. The proposed approach utilizes historical power and operational data collected from two 
utility-scale solar PV plants in India. A comprehensive time-series preprocessing pipeline is applied, including temporal 
feature extraction, categorical transformation, and Min–Max normalization. Multiple LSTM architectures with varying 
numbers of hidden units are systematically evaluated to identify an optimal balance between model complexity and 
predictive performance. Model training is conducted using the Adam optimizer with exponential learning rate decay and 
early stopping to prevent overfitting. Experimental results demonstrate that the proposed LSTM model with a 25–50 unit 
configuration achieves the best performance, yielding a test Mean Squared Error of 51.92 and a prediction error of only 
0.36%. Visual and quantitative analyses confirm that the model accurately reconstructs diurnal patterns and intra-day 
fluctuations, with strong generalization capability on unseen data. The findings indicate that a carefully configured LSTM 
can deliver high forecasting accuracy without relying on complex hybrid architectures or additional weather data, making 
it suitable for practical solar energy management applications. 

Keywords: Solar power forecasting; Long short-term memory; Time-series prediction; Photovoltaic systems; Deep 
learning 

1. INTRODUCTION 

The increased penetration of solar power generation in 
modern energy systems requires accurate and reliable 
power prediction methods [1]. The characteristics of solar 
power generation, which are highly dependent on 
environmental conditions, cause significant temporal 
fluctuations at both daily and intra-daily scales [2], [3]. This 
uncertainty is a major problem in power grid management, 
as power prediction errors can directly impact system 
stability, energy scheduling efficiency, and power supply 
reliability [4], [5]. 
The main challenge in solar power generation prediction 
lies in the nonlinearity and non-stationarity of the data, as 
well as their strong temporal dependence [6], [7]. The 

dominant diurnal pattern is often accompanied by short-
term fluctuations due to changes in weather conditions and 
the operational dynamics of photovoltaic systems [8], [9], 
[10]. Conventional modeling approaches based on linear 
regression or classical statistical methods generally 
struggle to capture these complex temporal relationships, 
resulting in limited accuracy, especially during transition 
periods and peak generation [11], [12], [13]. 
To address these issues, this study aims to develop a solar 
power prediction model based on Long Short-Term 
Memory (LSTM) to effectively capture nonlinear temporal 
dynamics. The model is designed to utilize historical power 
and operational variable information to generate accurate 
short-term DC power predictions. In addition, this study  
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The main contributions of this study can be summarized as 
follows. First, this study presents an LSTM-based solar 
power prediction framework that reconstructs diurnal 
patterns and intra-daily fluctuations with very low error 
rates, as shown by quantitative and visual evaluation 
results. Second, a comparative analysis of several LSTM 
architecture configurations was conducted to identify the 
optimal balance between model complexity and prediction 
performance. Third, this study provides an in-depth visual 
analysis by comparing actual and predicted values, 
including zoom-in visualizations, demonstrating the 
model's ability to capture local temporal dynamics with 
precision. Thus, the results of this study make a significant 
contribution to the development of reliable solar power 
generation prediction systems to support energy 
management and power grid operation planning. 

2. RELATED WORK 

Studies on deep learning-based solar power generation 
prediction over the last five years have seen a significant 
shift from conventional statistical approaches to recurrent 
neural network-based time-series models, particularly 
Long Short-Term Memory (LSTM). Malakar et al. [14] 
emphasize that LSTM has advantages for modeling short- 
and long-term temporal dependencies in nonlinear, 
nonstationary renewable energy data. Their study shows 
that an optimized LSTM architecture can significantly 
improve prediction accuracy compared to classical 
methods such as ARIMA and linear regression. 
Further development of the LSTM architecture was carried 
out by Garip et al. [15], who examined photovoltaic power 
prediction based on weather data using LSTM in a day-
ahead forecasting scenario. The results of this study show 
that LSTM can represent diurnal patterns well, but its 
performance is sensitive to parameter selection and the 
quality of meteorological data. Similar findings were also 
reported by Nguyen et al., who applied LSTM to large-scale 
solar power plants and emphasized the importance of 
temporal feature engineering to improve prediction 
stability [16]. 
As data complexity and accuracy requirements increase, 
several studies have begun to propose multi-layer and 
hybrid LSTM architectures. Gaur et al. showed that stacked 
LSTMs outperform single LSTMs in modeling solar power 
fluctuations, especially over short time horizons [17]. 
Meanwhile, Sadeghi et al. compared various hybrid deep 
learning approaches and reported that integrating LSTMs 
with optimization and feature-extraction techniques 
consistently reduces prediction error [18]. 
Attention-based approaches are also increasingly used to 
improve LSTMs' ability to capture complex temporal 
dynamics. Yang et al. proposed an LSTM model with a dual-
stage attention mechanism and demonstrated a significant 
improvement in accuracy, especially under changing 
weather conditions [19]. A recent study by Zhou et al. 
combined CNNs, LSTMs, and attention mechanisms with 

Bayesian optimization, achieving superior performance but 
at the cost of increased computational complexity [20]. 
Although various hybrid approaches show high 
performance, most previous studies have focused on 
improving architecture and integrating additional features, 
at the cost of relatively high computational expenses and 
challenges in model interpretability. Furthermore, visual 
evaluation of the suitability of predictions and actual values 
at a local temporal scale remains relatively limited. Based 
on these gaps, this study focuses on developing and 
evaluating an efficient yet accurate LSTM architecture, with 
in-depth quantitative and visual analyses to assess the 
model's ability to represent the diurnal and intra-daily 
dynamics of solar power generation. 

3. METHODS 

This study proposes a deep learning-based methodological 
framework for modeling time series of solar power 
generation, with the main objective of accurately and stably 
predicting short-term photovoltaic system output power. 
The developed methodology is systematically designed to 
capture the nonlinear temporal characteristics of energy 
generation data while minimizing the risk of overfitting and 
data leakage, which are common in time-series modeling. 
All stages of the study, from data acquisition and pre-
processing to model training and evaluation, are organized 
in an integrated pipeline that reflects the actual operational 
conditions of solar power generation systems. The Long 
Short-Term Memory (LSTM) architecture was chosen as 
the core of the predictive model due to its ability to model 
long-term dependencies in sequential data, which is highly 
relevant to the dynamics of solar radiation-based energy 
production, as shown in Figure 1. 

 
Fig. 1. Overview of the proposed LSTM-based methodological pipeline for 
short-term solar power forecasting, including data acquisition and 
integration, temporal preprocessing, categorical transformation, feature 
engineering and target determination, data normalization, time-series 
formation and partitioning, LSTM model architecture design, optimization 
and training strategies, and model evaluation. 

3.1. Data Acquisition and Integration 

This study uses a publicly available solar power 
generation dataset obtained from Kaggle, comprising 
operational data from two utility-scale photovoltaic plants 
(Plant 1 and Plant 2) located in India. The dataset was 
collected over a continuous 34-day observation period 
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and consists of high-resolution time-series measurements 
recorded at the inverter level. In total, the integrated 
dataset contains approximately 67,000 records, capturing 
detailed variations in power generation across multiple 
inverters. Data from both plants were loaded separately 
and concatenated into a unified dataset to develop a more 
general, location-independent prediction model. This 
integration process was performed after ensuring 
consistency in attribute structures, temporal resolution, 
and timestamp formatting across the two datasets. 

3.2. Temporal Data Preprocessing 

The time attribute (DATE_TIME) was converted into a 
datetime format to enable richer temporal information 
extraction. Several time features were derived from this 
attribute, namely year, month, day, hour, minute, and 
second. This approach aimed to capture periodic and 
seasonal patterns that inherently affect solar power 
production, particularly the daily pattern (diurnal cycle), 
which is particularly dominant in photovoltaic systems. 

3.3. Categorical Variable Transformation 

The SOURCE_KEY attribute, which represents the 
inverter's identity, is a categorical variable that neural 
network-based models cannot directly use. Therefore, a 
Label Encoding transformation is applied to convert each 
inverter identity into a discrete numerical representation. 
This approach allows the model to distinguish between 
inverter characteristics without losing structural 
information. 

3.4. Feature Engineering and Target Determination 

In this study, the target variable predicted is DC_POWER, 
which represents the direct current power generated by 
solar panels before the inversion process. Meanwhile, the 
input features consist of a combination of operational and 
temporal variables, namely AC_POWER, PLANT_ID, 
SOURCE_KEY, DAILY_YIELD, TOTAL_YIELD, and all time-
derived features. The selection of these features is based 
on the functional correlation between DC power, AC 
power, energy accumulation, and the time dynamics of the 
photovoltaic system's operation. 

3.5. Data Normalization 

To ensure the stability of the training process and 
accelerate model convergence, all input features are 
normalized using Min–Max scaling. This process maps 
each feature to the range [0, 1] using Equation (1). 
 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1) 

 
where x is the original value of the feature, while 𝑥𝑚𝑖𝑛 and 
𝑥𝑚𝑎𝑥  are the minimum and maximum values of the 
feature, respectively. This normalization is very important 
in LSTM models because differences in feature scales can 

cause certain gradients to dominate, reducing learning 
performance. 

3.6. Time Series Data Formation and Data 
Partitioning 

The normalized dataset is sorted by time to maintain 
temporal consistency and prevent data leakage. Next, the 
data is split into training and test sets at an 80:20 ratio, 
without shuffling (shuffle=False). This approach reflects a 
real-world prediction scenario in which the model is 
trained on historical data and tested on future data. The 
data is then reshaped into the three-dimensional format 
(samples, timesteps, features) required by the LSTM 
architecture, with timesteps set to 1. 

3.7. LSTM Model Architecture 

Long Short-Term Memory (LSTM) is an extension of 
recurrent neural networks designed to model long-term 
temporal dependencies in nonlinear time series data. This 
capability is achieved through an internal memory 
mechanism controlled by three main gates, namely the 
forget gate, input gate, and output gate, which adaptively 
regulate the flow of information throughout the time 
sequence. 
At each time step t, the forget gate 𝑓𝑡  in Equation (2), the 
proportion of historical information from the previous cell 
state 𝐶𝑡−1 that is retained, while the input gate 𝑖𝑡  in 
Equation (3), controls the integration of new information 

represented by the candidate cell state 𝐶𝑡̃  in Equation (4). 
The cell state update 𝐶𝑡  in Equation (5) is performed 
through a selective combination of past information and 
relevant new information, allowing the model to maintain 
long-term memory without accumulating temporal noise. 
Furthermore, the output gate 𝑜𝑡  in Equation (6), the 
portion of the cell state exposed as the hidden state ℎ𝑡  in 
Equation (7), which is used as a latent representation at 
time 𝑡 and as input at the next time step, through this 
mechanism, LSTM can stably capture complex temporal 
dynamics, making it suitable for modeling solar power 
generation that is affected by time variations and 
operational conditions. 
 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (3) 

𝐶𝑡̃ = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  (4) 
𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙𝐶𝑡̃  (5) 
𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (6) 
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡)  (7) 

 
The model was tested on several configurations of the 
number of neuron units in two LSTM layers (25 and 50 
units) to evaluate the effect of model complexity on 
prediction performance. 
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3.8. Optimization and Training Strategies 

The model training process used the Adam optimizer 
combined with an Exponential Learning Rate Decay 
scheme. The initial learning rate was set relatively high to 
accelerate the exploration of the solution space, then 
decreased exponentially to improve convergence stability. 
This strategy was formulated as Equation (8). 
 

𝛼𝑡 = 𝛼0 ⋅ 𝛾
𝑡  (8) 

 
where 𝛼0 is the initial learning rate and 𝛾 is the decay rate. 
In addition, an Early Stopping mechanism based on 
validation loss is applied to prevent overfitting and ensure 
that the model stops training when there is no significant 
improvement in performance. 

3.9. Model Evaluation 

Model performance is evaluated using Mean Squared 
Error (MSE) as the main loss function, which is formulated 
as Equation (9) 

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1   (9) 

In addition to numerical evaluation, a visual analysis was 
performed by comparing the actual value curve with the 
DC_POWER prediction in the test data. This approach 
provides an intuitive understanding of the model's ability 
to follow the temporal dynamics of solar power 
generation. 

4. RESULTS AND DISCUSSIONS 

4.1. Results   

The visualization results show the time series patterns of 
DC Power and AC Power generation at Plant 2 during the 
observation period. In general, both signals display 
consistent diurnal patterns, with power near zero at night, 
a sharp increase after sunrise, and a peak in generation 
around midday. This pattern confirms that the data 
realistically represent the physical characteristics of the 
photovoltaic system and is valid for further analysis, as 
shown in Figure 2. 
 

 
Fig. 2. Time-series visualization of DC power and AC power generation at Plant 2, illustrating consistent diurnal patterns with near-zero output during 
nighttime and peak generation around midday. 

 
In the DC Power signal, there are significant variations in 
daily peak amplitude between days. Some days show 
relatively stable, high-power peaks, while other days 
experience sharp fluctuations and temporary drops 
during the daytime. This phenomenon indicates the 
presence of external influences such as changes in solar 
radiation intensity due to weather conditions, partial 
shading, or potential panel performance degradation. In 
addition, the presence of spikes and sudden drops during 
active production hours indicates nonlinear dynamics that 
challenge conventional linear prediction models. 
The AC Power signal shows a temporal pattern that 
generally follows DC Power, but with slightly lower values 
due to the energy conversion process in the inverter. 
However, at some time intervals, the curve shape appears 
rougher and more fluctuating than the DC signal. This 

indicates variations in inverter efficiency or in the 
system's response to rapid changes in input power. These 
differences in characteristics reinforce the importance of 
time-series-based modeling that can capture the 
nonlinear relationship and temporal delay between DC 
and AC power. 
A comparison of the two signals also shows that, although 
the global trends are similar, there are certain intervals in 
which the decline in DC power is not fully matched by a 
decline in AC power in the same proportion, and vice 
versa. This condition suggests potential inconsistencies in 
inverter performance or a smoothing effect on the power 
conversion system. From a modeling perspective, these 
characteristics confirm that the relationship between the 
input and target variables is not static but is influenced by 
the system's temporal context and operational conditions. 
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Overall, these visualization results confirm that solar 
power generation data exhibits strong temporal patterns, 
nonlinear fluctuations, and short- and medium-term 
dependencies, making it highly suitable for modeling with 
a Long Short-Term Memory (LSTM)-based architecture. 
These characteristics also explain why a deep learning 
approach is necessary to achieve stable, accurate 
predictions in solar energy generation systems. 
In this study, four Long Short-Term Memory (LSTM) 
architectures were evaluated to examine the effect of the 
number of neurons per layer on solar power prediction 
performance. Models A to D represent variations in the 
number of units in two LSTM layers, with all other 
components—including the data pre-processing scheme, 
optimizer, initial learning rate, and evaluation strategy—
kept the same. Model A uses 25 units in both LSTM layers 
(25–25), Model B uses 25 units in the first layer and 50 
units in the second layer (25–50), Model C uses 50 units in 
the first layer and 25 units in the second layer (50–25), 
while Model D uses 50 units in both LSTM layers (50–50). 

TABLE 1. Performance comparison of LSTM architectures for solar 
power prediction. 

LSTM 
Configuration 

Layer 
1 Units 

Layer 
2 Unit 

Epoch 
Optimal 

Lowest 
Validation 

Loss  

Test 
Loss 

Error 
(%) 

Model A 25 25 7 63.98 63.98 0.44 

Model B 25 50 9 51.92 51.92 0.36 

Model C 50 25 3 73.67 73.67 0.51 

Model D 50 50 4 65.59 65.59 0.46 

 
Based on the results summarized in Table 1, each 
configuration produces a different level of accuracy, even 
though all models achieve stable convergence. Model B 
(25–50) showed the best performance, with the lowest 
validation and test losses and the smallest prediction 
error percentage. This finding indicates that increasing 
the representation capacity in the second layer of the 
LSTM, which plays a role in capturing advanced temporal 
dependencies, significantly improves the model's 
generalization ability. 
In contrast, Model A (25–25) and Model C (50–25) show 
relatively lower performance. In Model A, the smaller 
number of units in both layers limits the model's capacity 
to represent the complexity of solar power generation 
dynamics. Meanwhile, in Model C, the dominance of 
capacity in the first layer, without being balanced by the 
second layer, reduces the effectiveness of modeling 
medium-term temporal dependencies. 
Model D (50–50), which has the highest complexity, does 
not yield a significant performance improvement over 
Model B. This shows that excessive addition of units tends 
to increase the risk of training instability and is not always 
followed by improved accuracy. Thus, these results 
confirm that choosing a balanced LSTM architecture is 
more important than simply increasing model complexity. 

Overall, this analysis shows that Model B is the optimal 
configuration for solar power prediction on the dataset 
used, achieving the best balance between prediction 
accuracy and generalization. Therefore, this model was 
selected as the final model for further analysis and 
discussion. 
The graph in Figure 3 shows the dynamics of the training 
and validation losses during LSTM model training. In the 
early epochs, the training loss declined sharply, indicating 
that the model quickly learned the basic temporal patterns 
in the solar power generation data. This decline reflects 
the effectiveness of parameter initialization and the LSTM 
architecture's ability to capture the data's nonlinear 
structure. 
 

 
Fig. 3. Training and validation loss curves of the LSTM model (25–50 
units) during the learning process. 
 

As the number of epochs increases, the training loss 
gradually decreases, indicating good convergence. The 
validation loss shows fluctuations in the early epochs, 
including a significant spike, indicating the model's 
sensitivity to variations in the validation data. However, 
after this initial phase, the validation loss decreases and 
reaches a minimum at epoch 9, which is then used as the 
optimal training point via the early stopping mechanism. 
The consistency between the training and validation loss 
trends in the final epochs indicates that the model does 
not exhibit significant overfitting. The distance between 
the two curves is relatively small at the optimal point, 
indicating the model has good generalization ability to 
data not used during training. Thus, this graph confirms 
that the proposed LSTM configuration achieves an 
effective balance between accuracy and learning stability. 
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Fig. 4. Comparative test loss (MSE) of different LSTM model 
configurations. The results indicate that Model B (25–50) achieves the 
lowest test loss, demonstrating superior generalization performance 
compared to other architectures. 
 
The graph in Figure 4 compares test loss (MSE) values for 
the four LSTM architectures tested: Model A (25–25), 
Model B (25–50), Model C (50–25), and Model D (50–50). 
Model B (25–50) achieved the lowest test loss of 51.92, 
confirming it as the optimal configuration for modeling 
the temporal dynamics of solar power generation. The 
significant decrease in test loss in Model B indicates that 
increasing the number of units in the second layer—which 
plays an important role in capturing advanced temporal 
dependencies—improves the model's generalization. 
Conversely, Model C (50–25) shows the highest test loss, 
indicating that increasing the capacity of the first layer 
without adequate support from subsequent layers is 
ineffective at capturing the complexity of time-series 
patterns. Model A (25–25) and Model D (50–50) produce 
intermediate performance, with Model D showing no 
commensurate improvement despite having the highest 
architectural complexity. This confirms that excessive 
increases in model complexity do not always correlate 
with increases in prediction accuracy. Overall, this graph 
reinforces the quantitative findings in Table 1: a balanced 
LSTM configuration (Model B) provides the best and most 
stable performance. 
The graph in Figure 5 compares the actual DC_POWER 
value with the predicted DC_POWER value, indicating a 
very high level of agreement across the test data range. 
Visually, the prediction curve closely follows the main 
pattern of the actual curve, from the power increase after 
sunrise through the peak generation around midday to the 
power decrease to zero in the afternoon to evening. This 
conformity indicates that the LSTM model successfully 
captures the dominant temporal dynamics that govern the 
solar power generation process. 
 
 

 
Fig. 5. Comparison between actual and predicted DC power output using 
the proposed LSTM model. 
 
During the daytime, when the DC_POWER value reaches 
its peak, the model reconstructs the power amplitude with 
high accuracy. Although there are small deviations at 
some extreme peaks, the short-term fluctuation pattern is 
well maintained. This shows that the model not only 
learns global trends but is also sensitive to local variations 
arising from changes in environmental conditions and 
photovoltaic system operations. 
During the transition interval between inactive and active 
conditions, particularly in the early phase of power 
increase and decrease, the prediction curve continues to 
align consistently with the actual data. This capability 
reflects the LSTM memory mechanism's effectiveness in 
modeling sharp, nonlinear temporal changes, which are 
generally difficult to capture with static model-based 
prediction approaches. 
The difference between the predicted and actual values is 
relatively small and does not exhibit a systematic pattern 
of deviation. The discrepancies that arise are sporadic and 
localized, indicating that prediction errors are more 
influenced by data natural variability than by the model's 
structural limitations. This aligns with the low test loss 
and error rate, confirming the model's ability to generalize 
to previously unseen data. 
Overall, this graph confirms that the proposed LSTM 
approach can produce accurate and stable DC power 
predictions. The level of agreement between predictions 
and actual values indicates that the model has strong 
potential for application in short-term solar power 
generation prediction scenarios within energy 
management systems and power grid operation planning. 

4.2. Discussions   

Previous studies, such as those conducted by Malakar et 
al., Garip et al., and Nguyen et al., have shown that LSTM 
outperforms conventional statistical methods in modeling 
temporal dependencies in solar power generation data 
[14], [15], [16]. However, most of these studies focused on 
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improving accuracy by adding weather variables or 
enriching external features, so model performance was 
highly dependent on the quality and availability of 
meteorological data. 
In contrast to these approaches, this study focuses on 
exploring LSTM architectures trained on historical power 
data, aiming to achieve a balance between model accuracy 
and efficiency. Experimental results show that a balanced 
LSTM configuration (Model B: 25–50) can achieve high 
accuracy without requiring complex hybrid architectures 
or additional mechanisms such as attention. 
Studies by Gaur et al. [17] and Sadeghi et al. [18] report 
improved performance with stacked LSTMs and hybrid 
models, but at the cost of increased computational 
complexity. Meanwhile, this study shows that increased 
complexity does not always result in significant 
improvements in accuracy, as demonstrated by Model D 
(50–50), which does not exceed Model B's performance. 
The attention-based approaches proposed by Yang et al. 
and Zhou et al. have proven effective in highly dynamic 
weather conditions. However, local visual evaluation and 
training stability analysis are often not discussed in depth 
[19], [20]. This study fills this gap by presenting a 
comprehensive visual analysis, including prediction-
versus-actual graphs and zoom-ins, to evaluate the 
model's ability to capture local temporal dynamics. 

TABLE 1. Comparison of previous studies on solar power generation 
forecasting and the proposed LSTM-based approach. 

Study Method 
Additional 

Data 
Forecast 
Horizon 

Evaluation 
Metrics 

Key Findings 

[14] LSTM Weather 
Short-
term 

RMSE, 
MAE 

LSTM 
outperforms 
ARIMA 

[15] LSTM Weather 
Day-
ahead 

RMSE, 
MAPE 

Sensitive to 
weather data 
quality 

[16] LSTM Operational 
Short-
term 

MAE, 
RMSE 

Temporal 
features have a 
significant 
effect 

[17] 
Stacked 
LSTM 

– 
Short-
term 

RMSE 
Improved 
accuracy, high 
complexity 

[18] 
Hybrid 
DL 

Weather + 
optimization   

Multi-
horizon 

RMSE, 
MAPE 

High accuracy, 
high 
computational 
cost 

[19] 
LSTM + 
Attention 

Weather 
Short-
term 

RMSE 

Stable under 
dynamic 
weather 
conditions 

[20] 
CNN–
LSTM–
Attention 

Weather 
Short-
term 

RMSE, 
MAE 

High accuracy, 
complex 
architecture 

Our 
Study 

LSTM 
(25–50) 

Historical 
power 

Short-
term 

MSE, 
Error (%) 

High accuracy, 
efficient, 
stable 

 

Most previous studies used RMSE and MAE as the primary 
performance metrics. This study used Mean Squared 
Error (MSE) and percentage error, which directly reflect 
the quadratic deviation between actual and predicted 
values. The results showed an error rate of 0.36%, which 
is competitive with previous studies, even without the use 
of weather features or complex hybrid architectures. 
Analysis of the training–validation loss curve shows stable 
convergence and no indication of significant overfitting, in 
line with the study objective of producing a robust model 
with good generalization capabilities. 
Overall, compared to previous studies, the main 
contribution of this study lies in presenting a simple yet 
effective LSTM model, with comprehensive quantitative 
and visual evaluations. These findings show that 
improving solar power prediction performance does not 
always require increasingly complex architectures, but 
can be achieved by selecting appropriate LSTM 
configurations and by in-depth analysis of the temporal 
behavior of the data. 

5. CONCLUSIONS 

This study aims to develop an accurate and stable short-
term solar power generation prediction model by 
leveraging Long Short-Term Memory (LSTM) for modeling 
nonlinear temporal dynamics. This objective is based on the 
need for a reliable prediction method to support energy 
management and power grid operation planning in 
renewable energy-based systems. Based on the results 
obtained, the objectives of this study have been successfully 
achieved. 
The experimental results show that the LSTM model 
accurately represents diurnal patterns and intra-daily 
fluctuations in solar power generation. Evaluation of 
several LSTM architecture configurations indicates that the 
balance of the number of neurons between layers plays an 
important role in determining model performance. The 
best configuration, namely a model with 25 units in the first 
layer and 50 units in the second layer, yielded low 
prediction errors and demonstrated consistent 
generalization on the test data. 
The main contribution of this study is the presentation of an 
efficient yet effective LSTM approach that does not rely on 
complex hybrid architectures or additional weather-based 
features. Furthermore, this study enriches solar power 
prediction analysis through comprehensive visual 
evaluation, including comparisons of actual and predicted 
values and zoom-in analysis to assess model performance 
on a local temporal scale. This approach provides a deeper 
understanding of the model's behavior in representing 
solar power generation dynamics. 
Overall, this study's findings confirm that selecting an 
appropriate LSTM configuration can yield accurate, stable 
short-term solar power predictions with relatively low 
complexity. Thus, the proposed model has the potential to 
be integrated into energy management systems and into 
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the planning of solar power plant operations. Future 
studies could focus on testing the model across more 
diverse datasets, integrating environmental variables, and 
developing interpretability approaches to increase 
confidence in its application in real-world operational 
environments. 
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