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Abstract. The increasing penetration of solar photovoltaic (PV) systems into modern power grids demands accurate,
reliable short-term power forecasting to ensure operational stability and efficient energy management. However, solar
power generation exhibits strong nonlinearity, non-stationarity, and pronounced temporal dependencies, driven by
diurnal cycles and rapid environmental variations, which pose significant challenges for conventional forecasting
approaches. This study aims to develop an efficient Long Short-Term Memory (LSTM)-based framework for short-term
DC power prediction that effectively captures the temporal dynamics of solar power generation while maintaining low
computational complexity. The proposed approach utilizes historical power and operational data collected from two
utility-scale solar PV plants in India. A comprehensive time-series preprocessing pipeline is applied, including temporal
feature extraction, categorical transformation, and Min-Max normalization. Multiple LSTM architectures with varying
numbers of hidden units are systematically evaluated to identify an optimal balance between model complexity and
predictive performance. Model training is conducted using the Adam optimizer with exponential learning rate decay and
early stopping to prevent overfitting. Experimental results demonstrate that the proposed LSTM model with a 25-50 unit
configuration achieves the best performance, yielding a test Mean Squared Error of 51.92 and a prediction error of only
0.36%. Visual and quantitative analyses confirm that the model accurately reconstructs diurnal patterns and intra-day
fluctuations, with strong generalization capability on unseen data. The findings indicate that a carefully configured LSTM
can deliver high forecasting accuracy without relying on complex hybrid architectures or additional weather data, making
it suitable for practical solar energy management applications.

Keywords: Solar power forecasting; Long short-term memory; Time-series prediction; Photovoltaic systems; Deep
learning

1. INTRODUCTION dominant diurnal pattern is often accompanied by short-
term fluctuations due to changes in weather conditions and
the operational dynamics of photovoltaic systems [8], [9],
[10]. Conventional modeling approaches based on linear
regression or classical statistical methods generally
struggle to capture these complex temporal relationships,

The increased penetration of solar power generation in
modern energy systems requires accurate and reliable
power prediction methods [1]. The characteristics of solar
power generation, which are highly dependent on
environmental conditions, cause significant temporal
fluctuations at both daily and intra-daily scales [2], [3]. This resulting in limited accuracy, especially during transition
uncertainty is a major problem in power grid management, periods and peak generation [11], [12], [13].

as power prediction errors can directly impact system To address these issues, this study aims to develop a solar

stability, energy scheduling efficiency, and power supply ~ Power prediction model based on Long Short-Term
reliability [4], [5]. Memory (LSTM) to effectively capture nonlinear temporal

dynamics. The model is designed to utilize historical power
and operational variable information to generate accurate
short-term DC power predictions. In addition, this study

The main challenge in solar power generation prediction
lies in the nonlinearity and non-stationarity of the data, as
well as their strong temporal dependence [6], [7]. The
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The main contributions of this study can be summarized as
follows. First, this study presents an LSTM-based solar
power prediction framework that reconstructs diurnal
patterns and intra-daily fluctuations with very low error
rates, as shown by quantitative and visual evaluation
results. Second, a comparative analysis of several LSTM
architecture configurations was conducted to identify the
optimal balance between model complexity and prediction
performance. Third, this study provides an in-depth visual
analysis by comparing actual and predicted values,
including zoom-in visualizations, demonstrating the
model's ability to capture local temporal dynamics with
precision. Thus, the results of this study make a significant
contribution to the development of reliable solar power
generation prediction systems to support energy
management and power grid operation planning.

2. RELATED WORK

Studies on deep learning-based solar power generation
prediction over the last five years have seen a significant
shift from conventional statistical approaches to recurrent
neural network-based time-series models, particularly
Long Short-Term Memory (LSTM). Malakar et al. [14]
emphasize that LSTM has advantages for modeling short-
and long-term temporal dependencies in nonlinear,
nonstationary renewable energy data. Their study shows
that an optimized LSTM architecture can significantly
improve prediction accuracy compared to classical
methods such as ARIMA and linear regression.

Further development of the LSTM architecture was carried
out by Garip et al. [15], who examined photovoltaic power
prediction based on weather data using LSTM in a day-
ahead forecasting scenario. The results of this study show
that LSTM can represent diurnal patterns well, but its
performance is sensitive to parameter selection and the
quality of meteorological data. Similar findings were also
reported by Nguyen et al., who applied LSTM to large-scale
solar power plants and emphasized the importance of
temporal feature engineering to improve prediction
stability [16].

As data complexity and accuracy requirements increase,
several studies have begun to propose multi-layer and
hybrid LSTM architectures. Gaur et al. showed that stacked
LSTMs outperform single LSTMs in modeling solar power
fluctuations, especially over short time horizons [17].
Meanwhile, Sadeghi et al. compared various hybrid deep
learning approaches and reported that integrating LSTMs
with optimization and feature-extraction techniques
consistently reduces prediction error [18].
Attention-based approaches are also increasingly used to
improve LSTMs' ability to capture complex temporal
dynamics. Yang et al. proposed an LSTM model with a dual-
stage attention mechanism and demonstrated a significant
improvement in accuracy, especially under changing
weather conditions [19]. A recent study by Zhou et al.
combined CNNs, LSTMs, and attention mechanisms with
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Bayesian optimization, achieving superior performance but
at the cost of increased computational complexity [20].
Although various hybrid approaches show high
performance, most previous studies have focused on
improving architecture and integrating additional features,
at the cost of relatively high computational expenses and
challenges in model interpretability. Furthermore, visual
evaluation of the suitability of predictions and actual values
at a local temporal scale remains relatively limited. Based
on these gaps, this study focuses on developing and
evaluating an efficient yet accurate LSTM architecture, with
in-depth quantitative and visual analyses to assess the
model's ability to represent the diurnal and intra-daily
dynamics of solar power generation.

3. METHODS

This study proposes a deep learning-based methodological
framework for modeling time series of solar power
generation, with the main objective of accurately and stably
predicting short-term photovoltaic system output power.
The developed methodology is systematically designed to
capture the nonlinear temporal characteristics of energy
generation data while minimizing the risk of overfitting and
data leakage, which are common in time-series modeling.
All stages of the study, from data acquisition and pre-
processing to model training and evaluation, are organized
in an integrated pipeline that reflects the actual operational
conditions of solar power generation systems. The Long
Short-Term Memory (LSTM) architecture was chosen as
the core of the predictive model due to its ability to model
long-term dependencies in sequential data, which is highly
relevant to the dynamics of solar radiation-based energy
production, as shown in Figure 1.

Data Categorical
Acquisition and Variable Data LSTM Model Model
Integration Transformation Normalization Architecture Evaluation

Temporal Data Feature Time Series Optimization
Preprocessing Engineering Data Formation and Training
and Target and Data Strategies

Determination Partitioning

Fig. 1. Overview of the proposed LSTM-based methodological pipeline for
short-term solar power forecasting, including data acquisition and
integration, temporal preprocessing, categorical transformation, feature
engineering and target determination, data normalization, time-series
formation and partitioning, LSTM model architecture design, optimization
and training strategies, and model evaluation.

3.1. Data Acquisition and Integration

This study uses a publicly available solar power
generation dataset obtained from Kaggle, comprising
operational data from two utility-scale photovoltaic plants
(Plant 1 and Plant 2) located in India. The dataset was
collected over a continuous 34-day observation period
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and consists of high-resolution time-series measurements
recorded at the inverter level. In total, the integrated
dataset contains approximately 67,000 records, capturing
detailed variations in power generation across multiple
inverters. Data from both plants were loaded separately
and concatenated into a unified dataset to develop a more
general, location-independent prediction model. This
integration process was performed after ensuring
consistency in attribute structures, temporal resolution,
and timestamp formatting across the two datasets.

3.2. Temporal Data Preprocessing

The time attribute (DATE_TIME) was converted into a
datetime format to enable richer temporal information
extraction. Several time features were derived from this
attribute, namely year, month, day, hour, minute, and
second. This approach aimed to capture periodic and
seasonal patterns that inherently affect solar power
production, particularly the daily pattern (diurnal cycle),
which is particularly dominant in photovoltaic systems.

3.3. Categorical Variable Transformation

The SOURCE_KEY attribute, which represents the
inverter's identity, is a categorical variable that neural
network-based models cannot directly use. Therefore, a
Label Encoding transformation is applied to convert each
inverter identity into a discrete numerical representation.
This approach allows the model to distinguish between
inverter characteristics without losing structural
information.

3.4. Feature Engineering and Target Determination

In this study, the target variable predicted is DC_POWER,
which represents the direct current power generated by
solar panels before the inversion process. Meanwhile, the
input features consist of a combination of operational and
temporal variables, namely AC_POWER, PLANT_ID,
SOURCE_KEY, DAILY_YIELD, TOTAL_YIELD, and all time-
derived features. The selection of these features is based
on the functional correlation between DC power, AC
power, energy accumulation, and the time dynamics of the
photovoltaic system's operation.

3.5. Data Normalization

To ensure the stability of the training process and
accelerate model convergence, all input features are
normalized using Min-Max scaling. This process maps
each feature to the range [0, 1] using Equation (1).

X=Xmi
x = min 1
Xmax~Xmin ( )

where x is the original value of the feature, while x,,;, and
Xmax are the minimum and maximum values of the
feature, respectively. This normalization is very important
in LSTM models because differences in feature scales can
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cause certain gradients to dominate, reducing learning
performance.

3.6. Time Series Data Formation and Data

Partitioning

The normalized dataset is sorted by time to maintain
temporal consistency and prevent data leakage. Next, the
data is split into training and test sets at an 80:20 ratio,
without shuffling (shuffle=False). This approach reflects a
real-world prediction scenario in which the model is
trained on historical data and tested on future data. The
data is then reshaped into the three-dimensional format
(samples, timesteps, features) required by the LSTM

architecture, with timesteps set to 1.

3.7. LSTM Model Architecture

Long Short-Term Memory (LSTM) is an extension of
recurrent neural networks designed to model long-term
temporal dependencies in nonlinear time series data. This
capability is achieved through an internal memory
mechanism controlled by three main gates, namely the
forget gate, input gate, and output gate, which adaptively
regulate the flow of information throughout the time
sequence.

At each time step t, the forget gate f; in Equation (2), the
proportion of historical information from the previous cell
state Ci-1 that is retained, while the input gate i; in
Equation (3), controls the integration of new information
represented by the candidate cell state C; in Equation (4).
The cell state update C; in Equation (5) is performed
through a selective combination of past information and
relevant new information, allowing the model to maintain
long-term memory without accumulating temporal noise.
Furthermore, the output gate o, in Equation (6), the
portion of the cell state exposed as the hidden state h; in
Equation (7), which is used as a latent representation at
time t and as input at the next time step, through this
mechanism, LSTM can stably capture complex temporal
dynamics, making it suitable for modeling solar power
generation that is affected by time variations and
operational conditions.

fe = U(Wf [he—g, x ] + bf) (2)
iy = oW - [he_y,x¢] + b;) (3)
C; = tanh(W, - [he_y, %] + bc) (4)
Ct=ft®Ct—1+it®€t (5)
o = (W, - [he—q, x¢] + by) (6)
h; = o, © tanh(C;) (7)

The model was tested on several configurations of the
number of neuron units in two LSTM layers (25 and 50
units) to evaluate the effect of model complexity on
prediction performance.
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3.8. Optimization and Training Strategies

The model training process used the Adam optimizer
combined with an Exponential Learning Rate Decay
scheme. The initial learning rate was set relatively high to
accelerate the exploration of the solution space, then
decreased exponentially to improve convergence stability.
This strategy was formulated as Equation (8).

a =y (8)
where « is the initial learning rate and y is the decay rate.
In addition, an Early Stopping mechanism based on
validation loss is applied to prevent overfitting and ensure
that the model stops training when there is no significant
improvement in performance.

3.9. Model Evaluation

Model performance is evaluated using Mean Squared
Error (MSE) as the main loss function, which is formulated
as Equation (9)
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MSE = =1L, (y; — 9 9)
In addition to numerical evaluation, a visual analysis was
performed by comparing the actual value curve with the
DC_POWER prediction in the test data. This approach
provides an intuitive understanding of the model's ability
to follow the temporal dynamics of solar power
generation.

4. RESULTS AND DISCUSSIONS

4.1. Results

The visualization results show the time series patterns of
DC Power and AC Power generation at Plant 2 during the
observation period. In general, both signals display
consistent diurnal patterns, with power near zero at night,
a sharp increase after sunrise, and a peak in generation
around midday. This pattern confirms that the data
realistically represent the physical characteristics of the
photovoltaic system and is valid for further analysis, as
shown in Figure 2.
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Fig. 2. Time-series visualization of DC power and AC power generation at Plant 2, illustrating consistent diurnal patterns with near-zero output during

nighttime and peak generation around midday.

In the DC Power signal, there are significant variations in
daily peak amplitude between days. Some days show
relatively stable, high-power peaks, while other days
experience sharp fluctuations and temporary drops
during the daytime. This phenomenon indicates the
presence of external influences such as changes in solar
radiation intensity due to weather conditions, partial
shading, or potential panel performance degradation. In
addition, the presence of spikes and sudden drops during
active production hours indicates nonlinear dynamics that
challenge conventional linear prediction models.

The AC Power signal shows a temporal pattern that
generally follows DC Power, but with slightly lower values
due to the energy conversion process in the inverter.
However, at some time intervals, the curve shape appears
rougher and more fluctuating than the DC signal. This
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indicates variations in inverter efficiency or in the
system's response to rapid changes in input power. These
differences in characteristics reinforce the importance of
time-series-based modeling that can capture the
nonlinear relationship and temporal delay between DC
and AC power.

A comparison of the two signals also shows that, although
the global trends are similar, there are certain intervals in
which the decline in DC power is not fully matched by a
decline in AC power in the same proportion, and vice
versa. This condition suggests potential inconsistencies in
inverter performance or a smoothing effect on the power
conversion system. From a modeling perspective, these
characteristics confirm that the relationship between the
input and target variables is not static but is influenced by
the system's temporal context and operational conditions.
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Overall, these visualization results confirm that solar
power generation data exhibits strong temporal patterns,
nonlinear fluctuations, and short- and medium-term
dependencies, making it highly suitable for modeling with
a Long Short-Term Memory (LSTM)-based architecture.
These characteristics also explain why a deep learning
approach is necessary to achieve stable, accurate
predictions in solar energy generation systems.

In this study, four Long Short-Term Memory (LSTM)
architectures were evaluated to examine the effect of the
number of neurons per layer on solar power prediction
performance. Models A to D represent variations in the
number of units in two LSTM layers, with all other
components—including the data pre-processing scheme,
optimizer, initial learning rate, and evaluation strategy—
kept the same. Model A uses 25 units in both LSTM layers
(25-25), Model B uses 25 units in the first layer and 50
units in the second layer (25-50), Model C uses 50 units in
the first layer and 25 units in the second layer (50-25),
while Model D uses 50 units in both LSTM layers (50-50).

TABLE 1. Performance comparison of LSTM architectures for solar
power prediction.

Lowest

ITSTM . Laye?r Laye.r Epf)ch Validation Test Error
Configuration 1 Units 2 Unit Optimal Loss Loss (%)
Model A 25 25 7 63.98 6398 0.44
Model B 25 50 9 51.92 51.92 0.36
Model C 50 25 3 73.67 73.67 0.51
Model D 50 50 4 65.59 65.59 0.46

Based on the results summarized in Table 1, each
configuration produces a different level of accuracy, even
though all models achieve stable convergence. Model B
(25-50) showed the best performance, with the lowest
validation and test losses and the smallest prediction
error percentage. This finding indicates that increasing
the representation capacity in the second layer of the
LSTM, which plays a role in capturing advanced temporal
dependencies, significantly improves the model's
generalization ability.

In contrast, Model A (25-25) and Model C (50-25) show
relatively lower performance. In Model A, the smaller
number of units in both layers limits the model's capacity
to represent the complexity of solar power generation
dynamics. Meanwhile, in Model C, the dominance of
capacity in the first layer, without being balanced by the
second layer, reduces the effectiveness of modeling
medium-term temporal dependencies.

Model D (50-50), which has the highest complexity, does
not yield a significant performance improvement over
Model B. This shows that excessive addition of units tends
to increase the risk of training instability and is not always
followed by improved accuracy. Thus, these results
confirm that choosing a balanced LSTM architecture is
more important than simply increasing model complexity.
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Overall, this analysis shows that Model B is the optimal
configuration for solar power prediction on the dataset
used, achieving the best balance between prediction
accuracy and generalization. Therefore, this model was
selected as the final model for further analysis and
discussion.

The graph in Figure 3 shows the dynamics of the training
and validation losses during LSTM model training. In the
early epochs, the training loss declined sharply, indicating
that the model quickly learned the basic temporal patterns
in the solar power generation data. This decline reflects
the effectiveness of parameter initialization and the LSTM
architecture's ability to capture the data's nonlinear
structure.

—— Training Loss
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Loss (MSE)

20000

—

2 4 [ a 10 12 14
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Fig. 3. Training and validation loss curves of the LSTM model (25-50
units) during the learning process.

As the number of epochs increases, the training loss
gradually decreases, indicating good convergence. The
validation loss shows fluctuations in the early epochs,
including a significant spike, indicating the model's
sensitivity to variations in the validation data. However,
after this initial phase, the validation loss decreases and
reaches a minimum at epoch 9, which is then used as the
optimal training point via the early stopping mechanism.

The consistency between the training and validation loss
trends in the final epochs indicates that the model does
not exhibit significant overfitting. The distance between
the two curves is relatively small at the optimal point,
indicating the model has good generalization ability to
data not used during training. Thus, this graph confirms
that the proposed LSTM configuration achieves an
effective balance between accuracy and learning stability.

Creation disseminated under Creative Commons Attribution 4.0 International License

41



BIMA

BULLETIN OF INTELLIGENT MACHINES AND ALGORITHMS

Comparative Test Loss of LSTM Models

—8— Test Loss

70
)
2 65 -
2
8
E 60 -

55 1

Model A (25-25) Model B (25-50) Model C (50-25) Model D (50-50)

LSTM Model Configuration

Fig. 4. Comparative test loss (MSE) of different LSTM model
configurations. The results indicate that Model B (25-50) achieves the
lowest test loss, demonstrating superior generalization performance
compared to other architectures.

The graph in Figure 4 compares test loss (MSE) values for
the four LSTM architectures tested: Model A (25-25),
Model B (25-50), Model C (50-25), and Model D (50-50).
Model B (25-50) achieved the lowest test loss of 51.92,
confirming it as the optimal configuration for modeling
the temporal dynamics of solar power generation. The
significant decrease in test loss in Model B indicates that
increasing the number of units in the second layer—which
plays an important role in capturing advanced temporal
dependencies—improves the model's generalization.
Conversely, Model C (50-25) shows the highest test loss,
indicating that increasing the capacity of the first layer
without adequate support from subsequent layers is
ineffective at capturing the complexity of time-series
patterns. Model A (25-25) and Model D (50-50) produce
intermediate performance, with Model D showing no
commensurate improvement despite having the highest
architectural complexity. This confirms that excessive
increases in model complexity do not always correlate
with increases in prediction accuracy. Overall, this graph
reinforces the quantitative findings in Table 1: a balanced
LSTM configuration (Model B) provides the best and most
stable performance.

The graph in Figure 5 compares the actual DC_.POWER
value with the predicted DC_LPOWER value, indicating a
very high level of agreement across the test data range.
Visually, the prediction curve closely follows the main
pattern of the actual curve, from the power increase after
sunrise through the peak generation around midday to the
power decrease to zero in the afternoon to evening. This
conformity indicates that the LSTM model successfully
captures the dominant temporal dynamics that govern the
solar power generation process.
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Actual vs Predicted DC_POWER
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Fig. 5. Comparison between actual and predicted DC power output using
the proposed LSTM model.

During the daytime, when the DC_POWER value reaches
its peak, the model reconstructs the power amplitude with
high accuracy. Although there are small deviations at
some extreme peaks, the short-term fluctuation pattern is
well maintained. This shows that the model not only
learns global trends but is also sensitive to local variations
arising from changes in environmental conditions and
photovoltaic system operations.

During the transition interval between inactive and active
conditions, particularly in the early phase of power
increase and decrease, the prediction curve continues to
align consistently with the actual data. This capability
reflects the LSTM memory mechanism's effectiveness in
modeling sharp, nonlinear temporal changes, which are
generally difficult to capture with static model-based
prediction approaches.

The difference between the predicted and actual values is
relatively small and does not exhibit a systematic pattern
of deviation. The discrepancies that arise are sporadic and
localized, indicating that prediction errors are more
influenced by data natural variability than by the model's
structural limitations. This aligns with the low test loss
and error rate, confirming the model's ability to generalize
to previously unseen data.

Overall, this graph confirms that the proposed LSTM
approach can produce accurate and stable DC power
predictions. The level of agreement between predictions
and actual values indicates that the model has strong
potential for application in short-term solar power
generation  prediction scenarios within energy
management systems and power grid operation planning.

4.2. Discussions

Previous studies, such as those conducted by Malakar et
al,, Garip et al,, and Nguyen et al., have shown that LSTM
outperforms conventional statistical methods in modeling
temporal dependencies in solar power generation data
[14], [15], [16]. However, most of these studies focused on
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improving accuracy by adding weather variables or
enriching external features, so model performance was
highly dependent on the quality and availability of
meteorological data.

In contrast to these approaches, this study focuses on
exploring LSTM architectures trained on historical power
data, aiming to achieve a balance between model accuracy
and efficiency. Experimental results show that a balanced
LSTM configuration (Model B: 25-50) can achieve high
accuracy without requiring complex hybrid architectures
or additional mechanisms such as attention.

Studies by Gaur et al. [17] and Sadeghi et al. [18] report
improved performance with stacked LSTMs and hybrid
models, but at the cost of increased computational
complexity. Meanwhile, this study shows that increased
complexity does not always result in significant
improvements in accuracy, as demonstrated by Model D
(50-50), which does not exceed Model B's performance.
The attention-based approaches proposed by Yang et al.
and Zhou et al. have proven effective in highly dynamic
weather conditions. However, local visual evaluation and
training stability analysis are often not discussed in depth
[19], [20]. This study fills this gap by presenting a
comprehensive visual analysis, including prediction-
versus-actual graphs and zoom-ins, to evaluate the
model's ability to capture local temporal dynamics.

TABLE 1. Comparison of previous studies on solar power generation
forecasting and the proposed LSTM-based approach.

Additional Forecast Evaluation o
Study Method Data Horizon  Metrics Key Findings
LSTM
[14] LSTM Weather f;lrc:rrlt- &IXEE‘ outperforms
ARIMA
Sensitive to
Day-  RMSE,
[15] LSTM Weather ahead  MAPE wea‘Fher data
quality
Temporal
. Short-  MAE, features have a
[16] LSTM Operational term RMSE significant
effect
Improved
Stacked Short- .
[17] LSTM - term RMSE accuracy, high
complexity
High accuracy,
[18] Hybrid  Weather + Multi- RMSE, high
DL optimization horizon MAPE computational
cost
Stable under
LSTM + Short- dynamic
[19] Attention Weather term RMSE weather
conditions
CNN- High accuracy,
[20] LSTM-  Weather E:r?;t &I\XEE' complex
Attention architecture
Our LSTM Historical Short- MSE, Sflgg:;iuracy‘
Study (25-50) power term Error (%) stable !
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Most previous studies used RMSE and MAE as the primary
performance metrics. This study used Mean Squared
Error (MSE) and percentage error, which directly reflect
the quadratic deviation between actual and predicted
values. The results showed an error rate of 0.36%, which
is competitive with previous studies, even without the use
of weather features or complex hybrid architectures.
Analysis of the training-validation loss curve shows stable
convergence and no indication of significant overfitting, in
line with the study objective of producing a robust model
with good generalization capabilities.

Overall, compared to previous studies, the main
contribution of this study lies in presenting a simple yet
effective LSTM model, with comprehensive quantitative
and visual evaluations. These findings show that
improving solar power prediction performance does not
always require increasingly complex architectures, but
can be achieved by selecting appropriate LSTM
configurations and by in-depth analysis of the temporal
behavior of the data.

5. CONCLUSIONS

This study aims to develop an accurate and stable short-
term solar power generation prediction model by
leveraging Long Short-Term Memory (LSTM) for modeling
nonlinear temporal dynamics. This objective is based on the
need for a reliable prediction method to support energy
management and power grid operation planning in
renewable energy-based systems. Based on the results
obtained, the objectives of this study have been successfully
achieved.

The experimental results show that the LSTM model
accurately represents diurnal patterns and intra-daily
fluctuations in solar power generation. Evaluation of
several LSTM architecture configurations indicates that the
balance of the number of neurons between layers plays an
important role in determining model performance. The
best configuration, namely a model with 25 units in the first
layer and 50 units in the second layer, yielded low
prediction errors and demonstrated consistent
generalization on the test data.

The main contribution of this study is the presentation of an
efficient yet effective LSTM approach that does not rely on
complex hybrid architectures or additional weather-based
features. Furthermore, this study enriches solar power
prediction analysis through comprehensive visual
evaluation, including comparisons of actual and predicted
values and zoom-in analysis to assess model performance
on a local temporal scale. This approach provides a deeper
understanding of the model's behavior in representing
solar power generation dynamics.

Overall, this study's findings confirm that selecting an
appropriate LSTM configuration can yield accurate, stable
short-term solar power predictions with relatively low
complexity. Thus, the proposed model has the potential to
be integrated into energy management systems and into

Creation disseminated under Creative Commons Attribution 4.0 International License

43



BIMA

the planning of solar power plant operations. Future
studies could focus on testing the model across more
diverse datasets, integrating environmental variables, and

developing

interpretability approaches to increase

confidence in its application in real-world operational
environments.
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